

Doris phase mesurements, rinex format F. Mercier¹, L. Cerri¹, S. Houry¹

¹CNES Toulouse, France

New instrument generation and new measurement file format

- more channels (two for Jason1, six/seven for Jason2)
- new measurement definitions

Jason 1: delta phase, and it3 measurement Jason 2: synchroneous phase and pseudo-range

- Doris Rinex format, extension of GPS Rinex 3 format

Around 30 % of the measurements are below 10 degrees these measurements are eliminated from the POD process they are probably very interesting for positioning or troposphere analysis

Phase and pseudo-range measurements general characteristics

All epochs are present in the rinex file (0 s - 3 s - 10 s - 13 s - 20 s) present study (also POD): only 0 s - 10 s - 20 s

Acquisition strategy:

Below 5 degrees, acquisition is performed by channel 7

Above 5 degrees, the emitter is designated by Diode (channels 1 to 6) and removed from channel 7 — frequent interruptions around 5 degrees

\(\frac{100\text{ New Audots.}}{100\text{ New Horposphere models are needed to process correctly these low elevations current POD process > 10 degrees \(< 10\text{ degrees useful for positioning, tropospheric studies ... \} 30\text{ % of the measurements are below 10 degrees \} \end{align*}

Other characteristics: (not specific to Jason 2)
- measurements close to zero Doppler are flagged as invalid, but must be processed in order to achieve the phase continuity over a pass
- 'Doppler collisions': when two signals have the same Doppler, measurements are not performed, will interrupt here the phase continuit

The Doris Rinex Format

GPS like phase and pseudo-range measurements all instrumental delays corrected Synchroneous acquisition (on board Jason 2).

	101010	mod orracts to	TRICAD, ILOU,	LIND, HOND			
001	JIUB	SIUPENG		216025005	3	0	STATION REPERENCE
D15	KRVB	ROURGU		973018004	3	0	STATION REFERENCE
020	TLSB	TOULOUSE		100035005	3	0	STATION REFERENCE
939	YEMB	YELLOWENIFE		401278009	3	0	STATION REFERENCE
049	HBMB	HARTEBEESTHOE	X.	303025008	3	0	STATION REFERENCE
05.2	HEMB	ST HELENA		306065004	3	0	STATION REFERENCE
	4						# TIME REF STATIONS
D15		-0.495	-6.944				TIME REF STATION
020		29,774	5,787				TIME REF STATION
039		-61.692	-158,565				TIME REF STATION
049		-11:419	-38-194				TIME REF STATION
		bias (10 ⁻¹ s)	drift (10 ⁻¹⁴ s/s)				

Phase measurements characteristics

lono-free delta phase residuals (all measurements)

Slope between - 42 and -1: effect of the oscillator combined? with phase measurement noise other effects?

Results similar to 2006 Spot5 processing (see SWT presentation in Venice)

Pseudo range measurements processing

Objective : estimate the on board clock offset h_{ν}

Use of the master station measurements only

h_{rec} : polynomial prepresentation for the on board clock offset (typically degree 2-3 for a 10 days are)

 $t_{\text{emi}} = t_{\text{rec}}^{\text{rec}} - \frac{C_1}{n} - h_{\text{emi}} \rightarrow D(t_{\text{emi}}) \rightarrow h_{\text{rec}} - h_{\text{emi}} = \frac{C_1 - D}{n}$ Other formulation:

No specific preprocessing, except few outliers close to zero Doppler (flags in the rinex file)

Correction of the L1 cycle slips

Correction of the L1 cycle slips using 5*L1-L2

Threshold for passes definition on iono-free $-\frac{\gamma \lambda_1}{\lambda_2}L_1$: 0.5 cv L2 (elimination of the remaining L2 cycle slips, assuming no L1 errors)

Conclusion

Rinex format; very easy to use no specific satellite correction to apply observables very similar to GPS (pseudo-range and phase) currently used in the POD Jason2 process

Phase measurements:

Investigation of the small cycle slips occurrence

L1 jumps possible at low Doppler, low elevation

- all these jumps can be reconstructed

L2 jumps not so frequent

- not easy to detect and reconstruct

Allan variance analysis
- confirmation of the 2006 Spot5 studies
similar noise and oscillator effects
- it is necessary to take into account the oscillator behaviour
the best way (up to now): Doppler by differentiating the phase

Doris solutions using phase: improve the parametisation for the oscillators behaviour