Instrument processing splinter

OSTST 08

Shannon Brown Phil Callahan Julliette Lambin

Orals schedule

- 11:00 OBLIGIS Estelle New generation of wet tropospheric correction retrieval algorithms
- 11:12 BROWN Shannon Novel Near-Land Radiometer Wet Path Delay Retrieval Algorithm: Application to the Advanced Microwave Radiometer
- 11:24 SMITH Walter Monte Carlo demonstrations of a sea state bias induced during altimeter waveform retracking
- 11:36 DESJONQUERESJean-Damien Poseidon-3 in-flight results and tracking mode
- 11:48 CALLAHAN Philip JPL Retracking Results for TOPEX and Jason
- 12:00 THIBAUT Pierre Jason-2 coastal and hydrological waveform processing
- 12:12 LABROUE Sylvie Comparison of Jason-1 and Jason-2 sea state bias
- 12:24 TOURNADRE Jean Cloud and rain effect on AltiKa/SARAL Ka band radar altimeter: data availability an rain/cloud flag

JD. Desjonquères – Poseidon-3 in-flight results

Everything is OK, range accuracy within specs (< 1.5 cm rms) Tracking superior to Jason-1: DIODE/DEM and Median So-called "AGC anomaly": understood (less than 1% loss over ocean) => correction being planned

Tracking Algorithms Performances Illustration

-> The Median Algorithm gives better results -> default algorithm for JASON2

Waveforms over lakes

Pass 131 - Issykul Lake - Kirghzistan – Cycle 1, 2 and 3 Jason-2

- Tracking features of the different modes
- Data availability
- Centering of the waveform
- -"AGC anomaly" seen with median tracking Retracking:
- Concerns on effect of MLE4 scheme, in particular impact on rain flag quality
- High frequency noise colored on J2 (lower HF noise)?

Waveforms over lakes

₿ 500 **Jason-2** 8 400 Samples 8 - 300 **SGT** ş - 200 Cycle 1 - 100 8 - 0 41.5 **4**2.0 42.5 43.0 43.5 44.0 44.5 Latitude ŝ 500 **Jason-2** 8 - 400 Samples 8 - 300 Median Ŷ - 200 - 100 Cycle 2 8 - 0 **4**2 43 44 41

Latitude

Latitude

Jason-1 Cycles 240, 241, 245 / Jason-2 Cycles 1, 2, 6 (2 of 4)

Jason SGDR compared to LSE Retracking

P. Callahan – Retracking results J1, J2, TP

Comparisons of JPL 'TOPEX' retracking on Jason1 and OSTM/Jason2 data

-Not really applicable on DIODE/DEM mode (the waveforms are moving in the acquisition window) -Unexplained features on skewness estimates for Jason-2 Avg Aggregate skew K for J1 cycles 240, 241, 245

Waveform realization

Status on J1 and J2 SSB consistency - Conclusion

S. Labroue – J1, J2 Sea State Bias

level as TP/J1 consistency) the sa

Study on differences in SSB model with respect to the technique used = explained by the correlation between SLA and SWH

SSB models for J2: very similar to J1 (same

the same level of agreement than ars of studies

Correlation with oceanic variability

Analysis of the MSLA products from DUACS

MSLA= Map of $\eta - \hat{\eta}$

Multi mission products (TP,J1,EN,GFO) => SSH minus mean profile

Recent analysis in 2008 (off line products)

Interpolation of the maps at J1 location and time tag

Validation on an independent dataset 2005 algorithm applied over 2003 simulations...

E. Obligis – New generation of wet tropo correction

-idea: add new parameters in the retrieval algorithm (starting from ENVISAT NN algo)

-Most efficient parameters:

- SST

- Γ = dT/dh in the lower atmosphere

1-Sec avera J. Tournadre – Cloud and rain effect on Kaband altimeter

Model impact of cloud and rain on waveforms, then on data availability

New Rain/cloud flag based on the analysis of the off-nadir angle variation (Matching Pursuit)

C COCS CENTRE MATIONAL D'ÉTUD

OSTST 2008

d'Océanographie

Lab.

<mark>Spatiale</mark>

fremer

-40

-50 -60

-60

NICE

MP flag performs as well as Jason dual frequency rain flag

0.02

0.05

•Secondary maxima in storm tracks regions

•Data loss proba. Maximum in ITCZ

 $+ 60^{\circ} + 20^{\circ} + 40^{\circ} + 60^{\circ} + 80^{\circ} + 100^{\circ} + 120^{\circ} + 140^{\circ} + 160^{\circ} + 180^{\circ} - 160^{\circ} - 140^{\circ} - 120^{\circ} - 100^{\circ} - 80^{\circ} - 60^{\circ} - 40^{\circ} - 20^{\circ} 0^{\circ} + 50^{\circ} + 40^{\circ} + 100^{\circ} + 120^{\circ} + 140^{\circ} + 160^{\circ} + 180^{\circ} - 160^{\circ} - 140^{\circ} - 120^{\circ} - 100^{\circ} - 80^{\circ} - 60^{\circ} - 40^{\circ} - 20^{\circ} 0^{\circ} + 50^{\circ} + 40^{\circ} + 20^{\circ} + 100^{\circ} - 100^{\circ} - 80^{\circ} - 60^{\circ} - 40^{\circ} - 20^{\circ} 0^{\circ} + 100^{\circ} + 100^{$

Lab. d'Océanographie Spatiale

attenuation (dB)

Range error (cm)

² (deg²)

-2 L 21

50 L

0.5

0.5 └─ 21

0.5

(b)

(C)

latitude

Lautuon

Initude

0.5

⁵MP (deg²) و (d)

Latitude IMR LWC (kg.m⁻²)

MP flag

> MP performs as well as the operational flag rain cells with low

Better for small ILWC

Processing Overview (1 of 2)

- Some things to remember about Retracking
 - Everything is correlated !!
 - Fit is non-linear, iterative so effects of noise, correlation cannot necessarily be eliminated by averaging later
 - Length scales of everything except Range are much longer than 20 Hz ~= 300 meters. Retracking could be improved by taking account of this, but beyond 1frame (1 sec) is probably too difficult
- Sigma0 processing, "features" may not be fully understood by users
 - Sigma0 is harder to mechanize for Jason-2 because waveform moves in window
 - Effects from enforced attitude in MLE3 sigma0 maybe particularly sensitive to attitude
 - What sigma0 to use for Rain Flag? Or, how to do Rain Flag, in general?
 - K-C sigma0 difference with liquid threshold was very effective for TOPEX

Processing Overview (2 of 2)

- SSB Overview
 - Any error that has a geographic distribution that looks like SWH will affect SSB
 - (Corollary) Good orbits are key to getting good SSB
 - (Corollary) To make good TOPEX SSB, RGDR must include all other corrections first, then solve for SSB, then put new SSB on RGDR
- JPL Retracking shows that Jason-2 has opposite sign skewness to Jason-1 (both Median and DEM trackers). Should be investigated

Conclusions / Future plans

- Altimeter:
 - Fix the "AGC anomaly" problem,
 - Upload improved DEM whenever available
 - Investigate J1 J2 relative bias
- Radiometer:
 - Implement S. Brown algorithm (at least in "PISTACH" coastal products)
- Processing:
 - Fix the rain flag issue and/or problems related to MLE4
 - Indeed, as Jason-2 does not suffer from platform mispointing, do we need MLE4?
 - Investigate the high frequency noise coloration