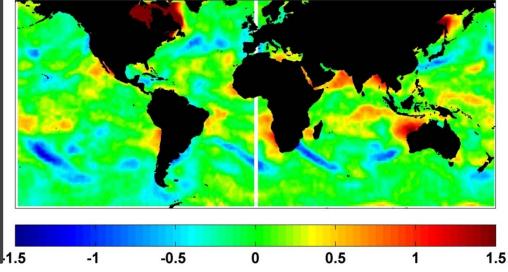

Error Structures in Altimetry Data from the Wet Tropospheric Path Delay Correction

Shannon Brown , Shailen Desai and Ant Sibthorpe Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA


> OSTST - Lisbon, Portugal October 18-20, 2010

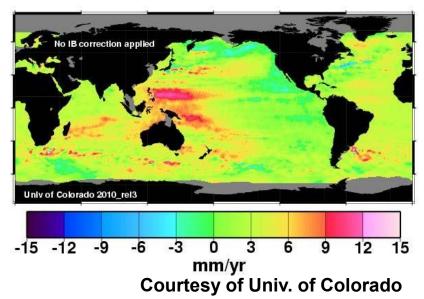
NASA

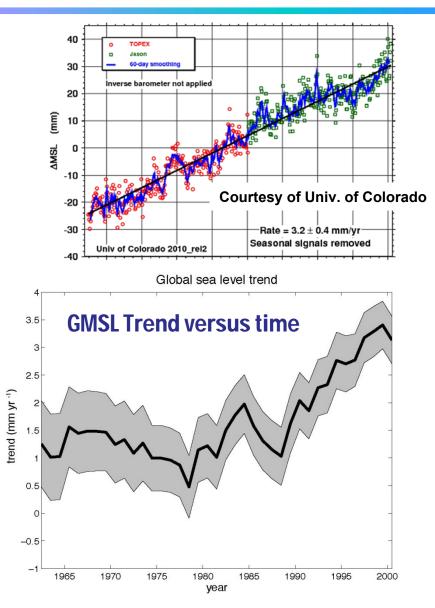
- On-going study to characterize the error structures from the wet PD measurement
 - Calibration of the raw radiometer measurements to an antenna temperature
 - Typically have error scales on orbital, yaw steering and <u>long term (> 1yr) time</u> scales
 - Removal of antenna pattern sidelobe contributions
 - Seasonal and large spatial scale (> 100 km)
 - Limitations of the geophysical retrieval algorithm
 - Errors correlated with geophysical state (e.g. weather conditions)

Example for retrieval algorithm errors

- Retrieval algorithm errors generally less than 1 cm for single measurement
- Occur on synoptic spatial scales (100-300 km)
- Average down to < 3 mm on long time scales

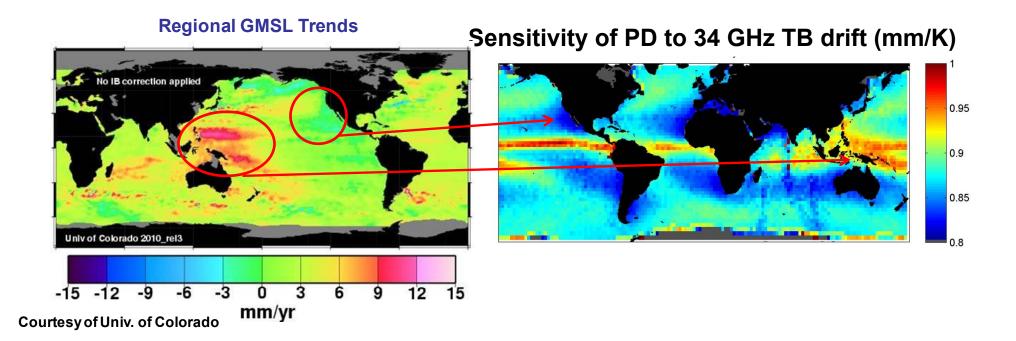
Simulated AMR PD Error [cm]




Long Time Scale Errors (> 1yr)

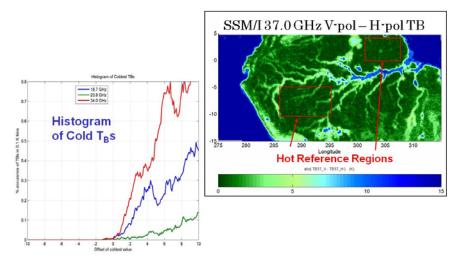
- Radiometer hardware stability dominates long time scale systematic errors (e.g. instrument drift)
- Altimeter radiometers are use relative internal calibration references and are not referenced to any calibration standard
- Any long term drift must be detected and accounted for in post processing

Regional GMSL Trends

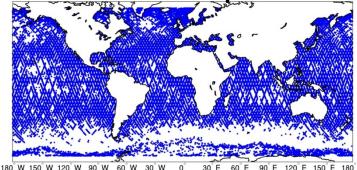


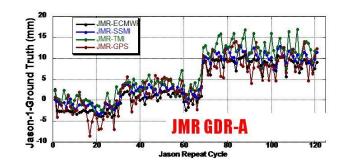
From Merrifield et al., J. Climate, 2009

• Drift in radiometer bias creates regional trends



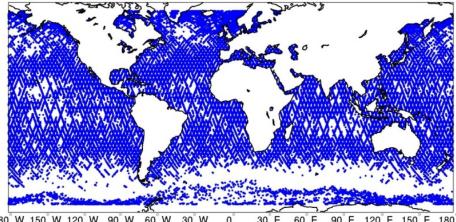
- On-orbit calibration for Jason-2 AMR divided into operational and off-line (research) segment
- Autonomous Radiometer Calibration System (ARCS) performs end-to-end on-orbit system calibration for AMR to remove gross errors with < 60-day latency
 - Does not produce "climate quality" calibration
- 1 mm/yr stability goal (requirement) can only be met through rigorous onorbit calibration using long time series

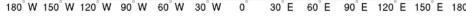


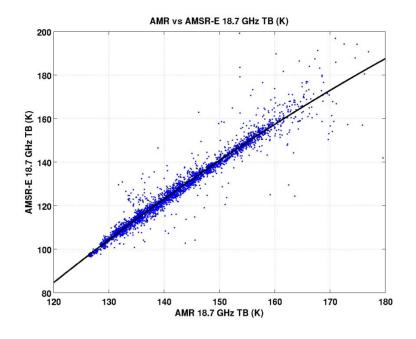


- Compare radiometer to on-Earth hot and cold T_B references
 - Vicarious Cold Reference
 - Amazon pseudo-blackbody regions
- Inter-sensor TB comparisons
 - AMSR-E, SSMI, TMI, JMR
 - Requires model to transfer one sensor's measurement to another
- Compare geophysical retrievals to in-situ measurements, models and other sensors
 - ECMWF, NCEP, SSMI, TMI, AMSR-E, GPS, RaOb, JMR
- Look for consistency between comparisons to assess and maintain stability to 0.1K/yr or 1mm/yr level

Match-ups with AMSR-E

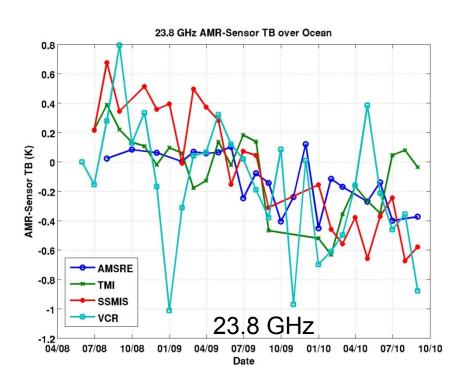


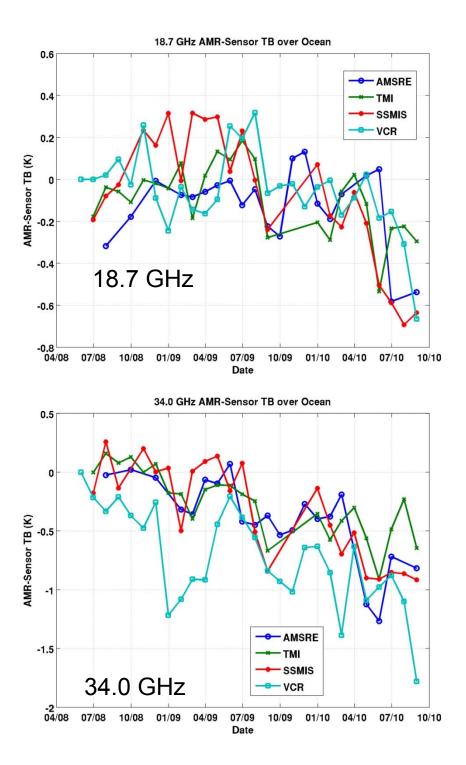



Inter-sensor TB Comparisons

- Transfer calibration of other microwave radiometers to AMR through co-incident observations
- Large number of globally distributed match-ups due to crossing orbits

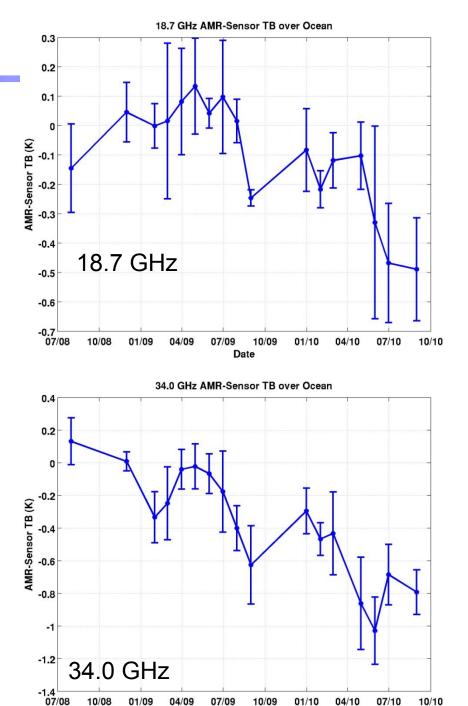
Match-ups with AMSR-E




- Other sensors operate at different frequencies with different viewing geometry than the AMR
- Requires mapping function to go from other sensor's TB to AMRs TB
 - Mapping function determined empirically
 - suitable for looking at long term trends

AMR TB Stability

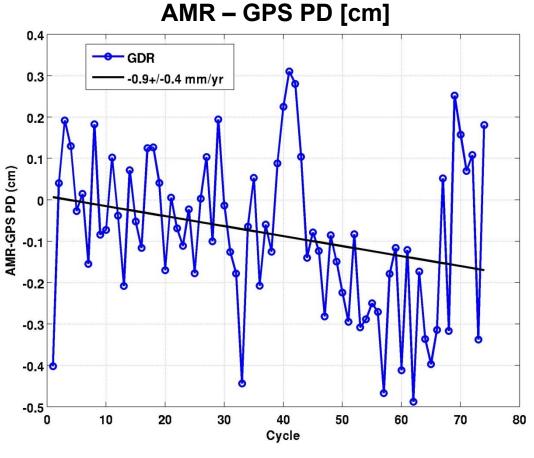
- Monthly averaged AMR-Sensor differences shown
- Multiple independent observations of TB stability required to have confidence at 0.1K/yr level



Consensus TB Offsets

- Computed monthly averages from all comparisons to get consensus calibration
- 18.7 GHz channel exhibited small drift until 7/2009, followed by small jump
- 23.8 GHz channel exhibited ~0.4K jump after 7/2009
- 34 GHz channel has residual drift of about 0.5K/yr – reduced from ~2K/yr by ARCS

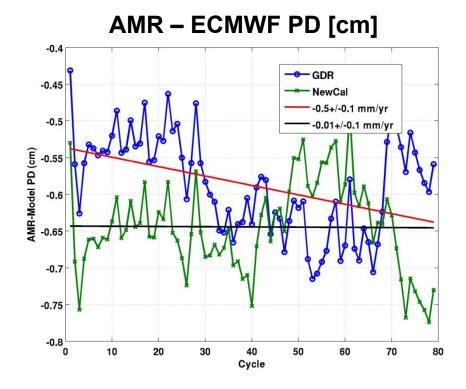
Date

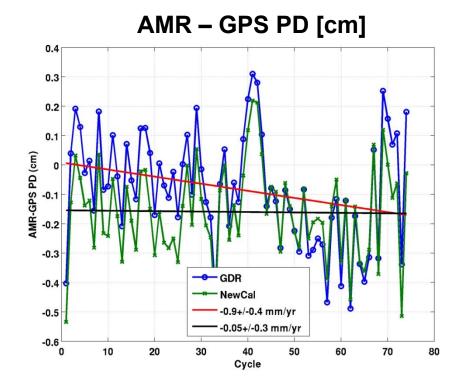


PD Observations

- TB comparisons suggest drift rate of -1mm/yr should be expected
 - Drift would be +3mm/yr without ARCS
- PD compared to ECMWF, GPS¹, SSMI, TMI, and AMSRE

Cycles 1-79	mm/yr
GPS	-0.9 <u>+</u> 0.4
ECMWF	-0.5 <u>+</u> 0.1
AMSR-E	-1.0 <u>+</u> 0.1
ТМІ	-0.9 <u>+</u> 0.1
SSMI	-1.1 <u>+</u> 0.1

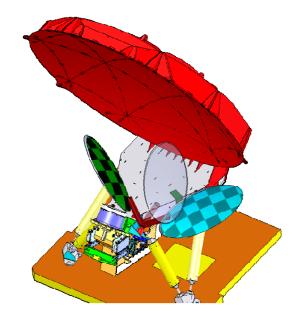

¹ Only completely independent comparison

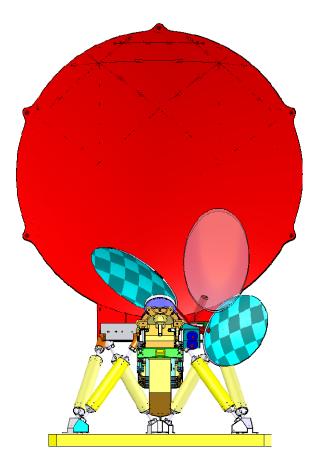


GDR-C Recalibration

- GDR-C is first opportunity to update the AMR calibration for the entire record
- Adjusted AMR calibration to remove consensus TB offsets
- Validated through PD, WS and CLW comparisons
 - GDR-C calibration shows negligible PD drift compared to GPS and ECMWF
 - Drift in AMR WS compared to altimeter removed with GDR-C calibration

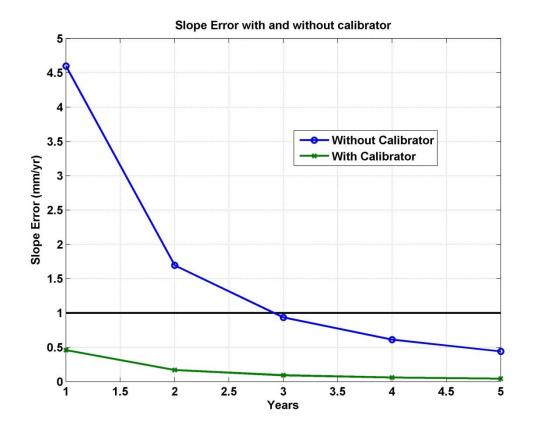
- Drift in GDR wet PD estimated to be about -1mm/yr
- ARCS successful is reducing drift from 3mm/yr to 1mm/yr
- Recalibration performed for GDR-C reduces drift over cycles 1-79 to a negligible level
- GDR-C will also include new processing to produce valid PDs in the coastal zone in addition to radiometer rain and sea ice flags
 - Currently available on AMR enhanced product (via PO.DAAC)
- Based on science team recommendation, study on-going to add calibrator to radiometer for Jason-3 to mitigate drift issue altogether
- Should also be considered for Jason-CS



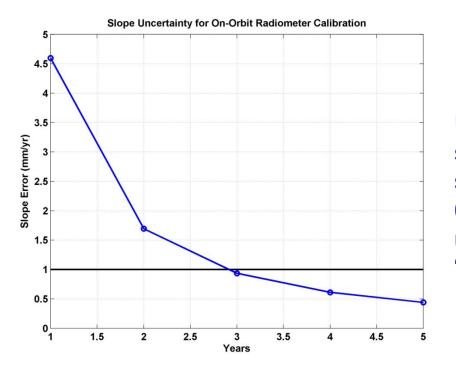


• Backup

Meeting the Drift Requirement by Design for Jason-3


- Based on the science team recommendation, a design study to add an on-board absolute calibration reference to the AMR for Jason-3 was initiated and is to be completed this month
- Preliminary results indicate that a lightweight secondary reflector providing a periodic cold sky look can be accommodated by the existing AMR design.
- A concept review planned for end of October will provide an independent assessment of the proposed design

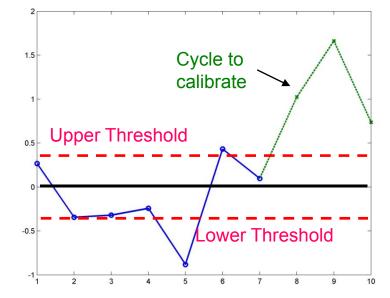
- Wet PD slope uncertainty estimated for current on-orbit calibration approach and for calibrator approach as a function of time span
 - On-orbit calibration approach assumes no drift in "ground truth" but this is not under project control and therefore verified posteriori
 - Calibrator approach assumes calibration performed once every 10 days
- 1 mm/yr uncertainty reached after 3 years assuming monthly 0.5K calibration uncertainty and no drift in "ground truth"
- Only a few months needed with calibrator to reach 1mm/yr uncertainty on slope error



- Radiometer PD stability on long time scales (>30 days) derived from ancillary sources
 - No control over "external references" (e.g. instrumentation change, geophysical signals in models)
 - References may not be stable over time and no way to validate it
 - External references should be used for validation, not calibration
- To perform climate measurements, future missions (e.g. Jason-3, Jason-CS...) must consider radiometer with capability for long term stability

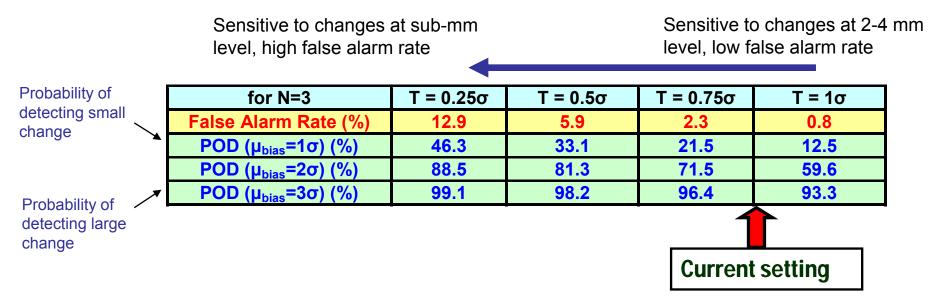
- What level of stability is required and over what time scales (e.g. accelerations/decelerations)?
- What is the requirement on regional sea level change and on what time scale?

Uncertainty on Wet PD slope (mm/yr) versus time span assuming monthly 0.5K calibration uncertainty and no drift in "ground truth"

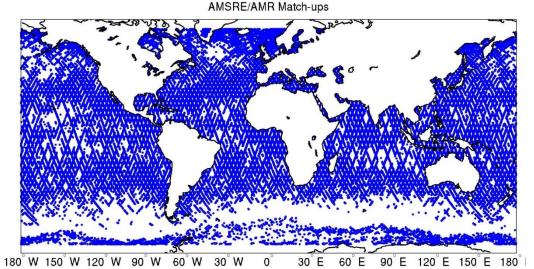


• Backup

- ARCS uses a combination of path delay and TB residuals to determine is recalibration is needed
 - Uses current GDR processing cycle + future data
- Checks if TB or PD biases from the current cycle + 2 future cycles <u>ALL</u> exceed either upper or lower threshold or if current cycle > 3σ
- Re-calibrates if either TB or PD threshold check fails
 - Only uses TBs to recalibrate
 - PD comparisons used for detection and validation only
- Validates by performing threshold check after-recalibration
 - Error if thresholds still exceeded

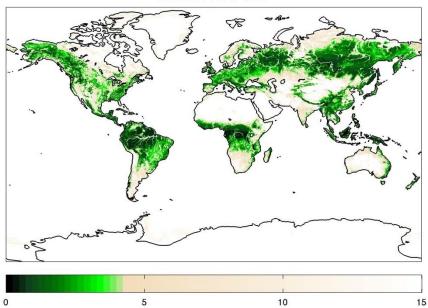


- Threshold setting allows ARCS to be aggressive or conservative
 - Balance False Alarm Rate (FAR) and Probability of Detection (POD)



• ARCS currently set to be conservative to minimize unnecessary recalibration at the expense of missing potential small changes

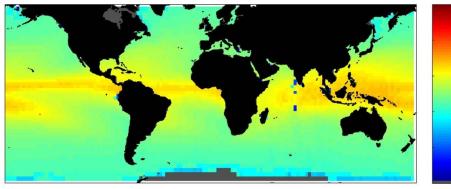
Inter-Sensor TB Comparisons



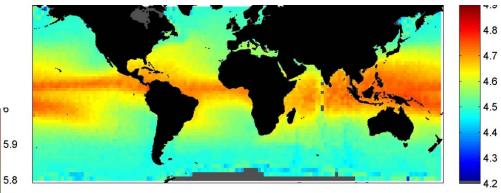
- Intercomparison with AMSRE, TMI, SSMI, WindSat and SSMIS Level1C data
- Ocean match-ups to +/- 66 degrees
- Simple regression algorithm used to transfer TBs between similar channels
- Radar altimeter derived WS and radiometer CLW used to filter for clear, calm scenes
 - WS < 6 m/s, CLW < 0.05 mm

- Performing land comparisons globally over heavily vegetated regions
 - 18 to 37 GHz de-pol < 2K
 - Act like pseudo-blackbodies, with little polarization or incidence angle dependence
- No inter-sensor mapping currently done

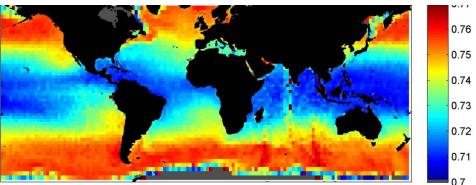
Gain Drift


5.7

5.6


- Structure of errors depends on whether the drift is in gain or bias
- Typical gain error from ND instability produces largest error for dry conditions

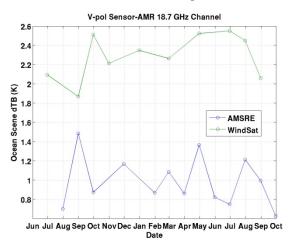
Sensitivity of PD to 23 GHz TB (mm/%)

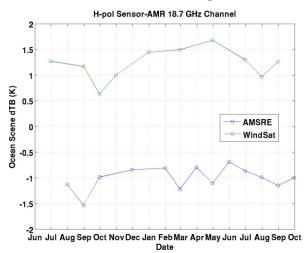


 Less geographical variation for typical gain errors

Sensitivity of PD to 18 GHz TB (mm/%)

5.5 Sensitivity of PD to 34 GHz TB (mm/%)

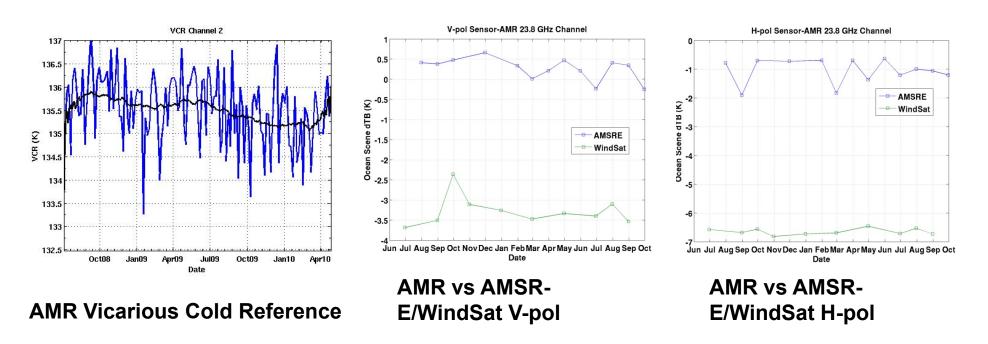

18 GHz Cold TBs


VCR Channel 1 126.8 126.6 126. (y) ^{126,7} 80 125.8 125.6 125.4 Apr09 Oct08 Jan09 Jul09 Oct09 Jan10 Apr10 Date

AMR Vicarious Cold Reference

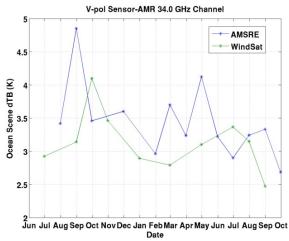
AMR vs AMSR-E/WindSat V-pol

AMR vs AMSR-E/WindSat H-pol

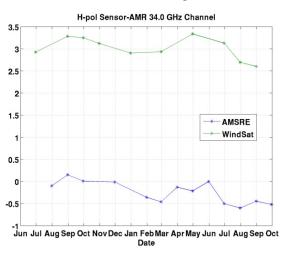

	1 yr [K/yr]	2 yr [K/yr]
Vicarious Cold	-0.1 <u>+</u> 0.1	0.05 <u>+</u> 0.04
AMSR-E 18.7 H	0.1 <u>+</u> 0.1	0.04 <u>+</u> 0.06
AMSR-E 18.7 V	0.06 <u>+</u> 0.1	-0.08 <u>+</u> 0.07
WindSat 18.7 H	0.2 <u>+</u> 0.1	0.04 <u>+</u> 0.07
WindSat 18.7 V	0.2 <u>+</u> 0.2	0.1 <u>+</u> 0.1

23 GHz Cold TBs

	1 yr [K/yr]	2 yr [K/yr]
Vicarious Cold	-0.3 <u>+</u> 0.2	-0.4 <u>+</u> 0.08
AMSR-E 23.8 H	-0.3 <u>+</u> 0.2	-0.4 <u>+</u> 0.08
AMSR-E 23.8 V	-0.4 <u>+</u> 0.2	-0.4 <u>+</u> 0.07
WindSat 23.8 H	-0.04 <u>+</u> 0.6	-0.2 <u>+</u> 0.2
WindSat 23.8 V	+0.1 <u>+</u> 0.6	-0.3 <u>+</u> 0.2



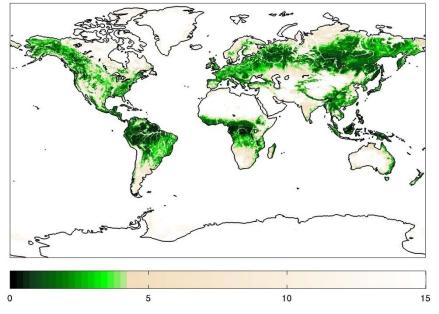
34 GHz Cold TBs



AMR Vicarious Cold Reference VCR Channel 3 148. 148 (¥) ¥) 147.5 147 146.5 146 Oct08 Oct09 Jan10 Apr10 Jan09 Apr09 Jul09 Date

AMR vs AMSR-E/WindSat V-pol

AMR vs AMSR-E/WindSat H-pol



	1 yr [K/yr]	2 yr [K/yr]
Vicarious Cold	-0.3 <u>+</u> 0.2	-0.5 <u>+</u> 0.05
AMSR-E 37 H	-0.3 <u>+</u> 0.2	-0.3 <u>+</u> 0.08
AMSR-E 37 V	-0.2 <u>+</u> 0.2	-0.4 <u>+</u> 0.09
WindSat 37 H	+0.6 <u>+</u> 0.2	-0.4 <u>+</u> 0.08
WindSat 37 V	-0.6 <u>+</u> 0.3	-0.5 <u>+</u> 0.1

Warm TB Inter-Sensor Drift JPL

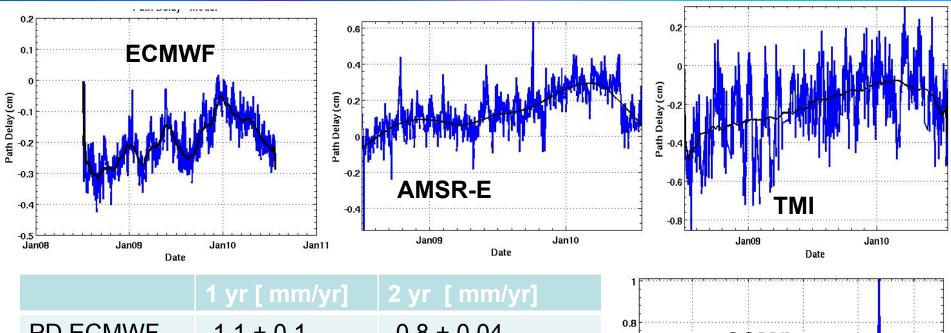
AMSR-E 37V-37H

AMR 23.8 GHz	2 yr [K/yr]
Amazon Model	-0.07 <u>+</u> 0.2
AMSR-E 23 H	0.07 <u>+</u> 0.2
AMSR-E 23 V	0.01 <u>+</u> 0.2
WindSat 23 H	-0.3 <u>+</u> 0.1
WindSat 23 V	-0.3 <u>+</u> 0.1

AMR 18.7GHz	2 yr [K/yr]
Amazon Model	0.1 <u>+</u> 0.2
AMSR-E 18 H	0.3 <u>+</u> 0.2
AMSR-E 18 V	0.3 <u>+</u> 0.2
WindSat 18 H	-0.01 <u>+</u> 0.2
WindSat 18 V	-0.05 <u>+</u> 0.1

AMR 34.0 GHz	2 yr [K/yr]
Amazon Model	- 0.1 <u>+</u> 0.2
AMSR-E 37 H	-0.2 <u>+</u> 0.2
AMSR-E 37 V	-0.2 <u>+</u> 0.2
WindSat 37 H	-0.2 <u>+</u> 0.2
WindSat 37 V	-0.2 <u>+</u> 0.2

Summary of TB comparisons JPL


AMR	Cold TBs	Hot TBs
18.7	0.03 <u>+</u> 0.07	0.1 <u>+</u> 0.17
23.8	-0.34 <u>+</u> 0.09	-0.18 <u>+</u> 0.05
34.0	-0.42 <u>+</u> 0.08	-0.1 <u>+</u> 0.2

- Fairly good agreement between TB comparisons
- 23.8 and 34 GHz channels appear to have residual drift
- TB comparisons suggest PD drift rate of -1.5 <u>+</u> 0.5 mm/yr

PD Inter-comparisons

PD ECMWF	-1.1 <u>+</u> 0.1	-0.8 <u>+</u> 0.04	0.8 SSM/I
PD AMSR-E	-1.0 <u>+</u> 0.2	-1.2 <u>+</u> 0.06	€ 0.6 ≽
PD SSMI F13	-1.7 <u>+</u> 0.2	-1.1 <u>+</u> 0.1	0.4 5 0.4
PD TMI	-0.8 <u>+</u> 0.4	-1.1 <u>+</u> 0.1	
			Maria Maria

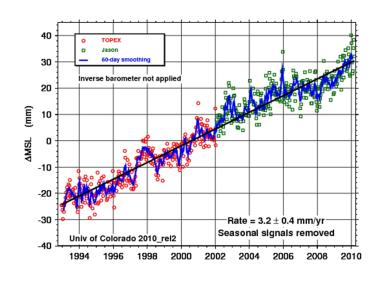
Oct08

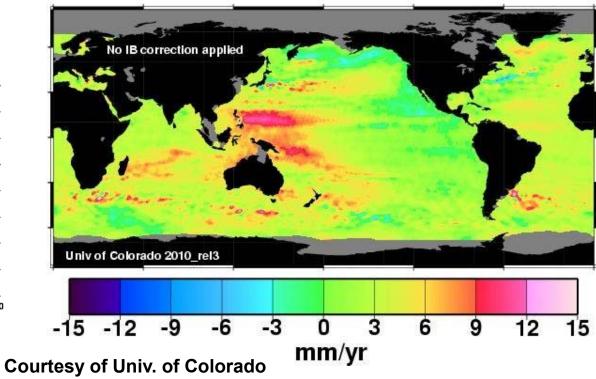
Jan09

Apr09

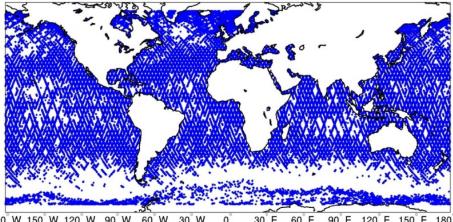
Date

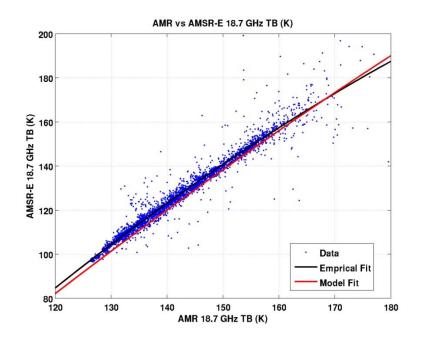
Jul09


Oct09


- Average from PD comparisons is -1.1 + 0.2 mm/yr
- Consistent with TB comparisons within error bars

- Observing regional trends also important
- Essential to understand impact of calibration drift on regional trends
- Different error structures arise due from instability in different channels and whether drift is gain or bias


Regional GMSL Trends


Inter-sensor TB Comparisons

Transfer calibration of other microwave radiometers to AMR through co-incident observations

Match-ups with AMSR-E

- Other sensors operate at different frequencies with different viewing geometry than the AMR
- Requires mapping function to go from other sensor's TB to AMRs TB
 - Mapping function determined empirically
 - suitable for looking at long term trends