



# Absolute calibration of SARAL-AltiKa in Kavaratti during its initial Calibration-Validation phase



#### List of contributors:

A. K. Shukla, Suchandra A. B., Arun Kumar S. V. V., Pascal Bonnefond, Laurent T., Mehra P.

# **Objectives**

- ➤ Is to calibrate AltiKa over Indian region of the global ocean
- Identifying and qualifying Kavaratti Cal-Val site for Altimeter calibration
- Geodetic survey and leveling experiment
- Calibration of AltiKa using its 11 cycles of observations over Kavaratti
- ➢ Global relative calibration of AltiKa with Jason-2 altimeter

## **Collaborative Institutes:**

- National Institute of Oceanography, CSIR, Goa
- Department of Science and Technology, Kavaratti

# **Global sea surface height - AltiKa**





#### **Permanent altimeter calibration sites**

- A Corsica, Ibiza, Gavdos (Northern hemisphere)
- B Harvest (Northern hemisphere)
- \* C Kavaratti (Equatorial zone)
  - D Bass strait (Southern hemisphere)

#### At Kavaratti site:

Pass #539 passes over west of Kavaratti site. The 11 cycles of AltiKa have spread over ~2Km along the altimeter track, and hence its absolute bias with respect to the in-situ observations.



# Criteria for a good calibration site

Altimeter should fly over the site

The site should be located sufficiently far offshore so that the area of illumination should cover entirely by ocean when the satellite is directly overhead

The data collection platform should be small enough so that it cannot influence the reflected radar signal

 Island stations are better, since they are away from the effects of shallow water

 Ultimately site at open ocean environment is best for these missions under which they are designed to best operate

# SARAL AltiKa: Calibration

| Level -2 Saral/AltiKa products |               |              |              |       |  |
|--------------------------------|---------------|--------------|--------------|-------|--|
|                                | OGDR          | IGDR         | GRD          | GOALS |  |
| Sea surface height (cm)        | 30.5cm (req.) | 5.3 cm(req.) | 4.6 cm(req.) | 2.8cm |  |
| Latency period                 | 3 – 5 Hours   | < 1.5 days   | ~40days      |       |  |

# Radar tide gauge specificationsSensorRangeAccuracySampling intervalData transferRadar level1 – 30m1 cm5 minutesGSM modemsensor (OTT,66666Germany)66666



"The principal of the method is to estimate the bias by means of comparison of altimetric sea surface height information to adjacent tide gauge sea surfae height data located within the same geodedic reference frame".

# **Geodetic survey and leveling experiment**



### **Summary: Leveling experiment**

#### GPS (72.63536°E / 10.57171°N / H=-87.026m)



 $D_tg_gps = 1.141m - 0.02m$  $D_tg_capt = 0.0$  (additional offset of the sensor) hwgs84 = -88.216m (from GAMIT) delta\_ellips = 0.701m

Absolute\_SSH\_RDR = hwgs84 + delta\_ellips - (D\_tg\_gps - D\_tg\_capt) - hraw\*1e<sup>-2</sup>



#### GPS (72.64705°E / 10.57493°N / H=-86.978m)



 $D_tg_gps = -0.563 - 0.02$  $D_tg_capt = 0.0$  (additional offset of the sensor) hwgs84 = -88.216m (from GAMIT) delta\_ellips = 0.701

absolute\_SSH\_TP =  $hwgs84 + delta_ellips - (D_tg_gps - D_tg_capt) - hraw*1e^{-2}$ 



### Verification of tide gauges using GPS buoy



Sea surface height from GPS buoy solution (red line), tide gauge (light green) at Kavaratti main jetty



Sea surface height GPS buoy (red, purple, magenta), main jetty tide gauge (light green) and NIOT tide gauge (dark green)



#### **Data preparation**

Sea surface height is the height of the sea surface above the reference ellipsoid. It is calculated by subtracting the corrected range from the altitude:

Corrected range =  $_1$ Range +  $_2$ WTC +  $_2$ DTC +  $_2$ IC +  $_2$ SSBC SSH = Altitude – Corrected range

<sup>1</sup> 40Hz altimetric data sets <sup>2</sup> 1Hz correction terms

| Specifications of correction                                 |                                              |  |  |  |
|--------------------------------------------------------------|----------------------------------------------|--|--|--|
| Range (0.025sec, 40Hz)                                       |                                              |  |  |  |
| Hence the followings are to be modeled to 40Hz time interval |                                              |  |  |  |
| Ionospheric correction (1sec)                                | Mean over -11sec to 11sec around the TCA     |  |  |  |
| Dry tropospheric correction (1sec)                           | Linear fit over -2sec to 2sec around the TCA |  |  |  |
|                                                              | interpolated at the TCA                      |  |  |  |
| Wet tropospheric correction (1sec)                           | Linear fit over -5sec to 5sec around the TCA |  |  |  |
| Sea state bias correction (1sec)                             | Cubic polynomial fit over -4sec to 4sec      |  |  |  |
|                                                              | around the TCA                               |  |  |  |
| Tide gauge (5min)                                            | Linear fit over 30min centered on TCA (5min  |  |  |  |
|                                                              | sampling                                     |  |  |  |

## Absolute bias estimation



#### Cycle # **Absolute bias (Altimeter SSH – Tide gauge SSH)** (day of pass)

Absolute bias in

AltiKa sea surface

1.68946

0.00813

350









|                         | 10 km × 10 km      | 25 km × 25 km       |
|-------------------------|--------------------|---------------------|
| No. of points           | 17871              | 273389              |
| Correlation coefficient | 0.99               | 0.99                |
| Slope                   | 1.00               | 1.00                |
| Bias RMSE (cm)          | <b>5.3</b> (12311) | <b>4.0</b> (188165) |

# Conclusion

- Kavaratti calibration and validation site is found to be suitable of Altimeter calibration
- 2. The absolute bias for OGRD/IGRD products of AltiKa is -3.9/-1.7 cm
- The higher bias found in few cycles over this site is often due to sea state bias & wet tropospheric correction
- The global bias of AltiKa against Jason-2 in IGDR product has a RMSE
  5.3/4.0cm in its 10/25km collocation
- 5. Future altimetric mission also should be planned to fly over Karavatti site so that this Equatorial site can be for its calibration

SARAL/AltiKa



Watson design