Retour d'expérience de l'altimétrie sur océan vers les zones de glace.
L'exemple concret de la correction de tropo humide modèle ECMWF opérationnelle/ERA-Interim

Annabelle Ollivier, Michael Ablain, Estelle Obligis

Introduction

Idée:

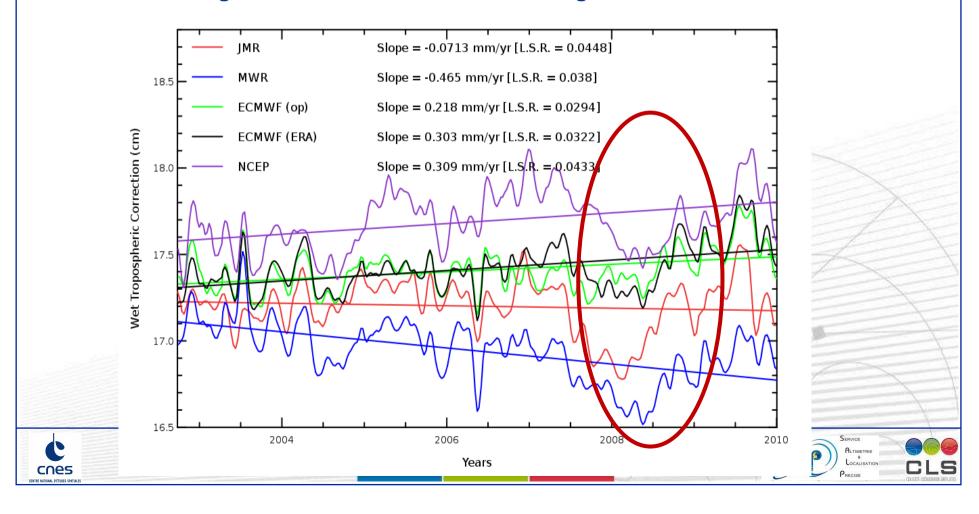
- Synergie possible entre l'altimétrie sur océan et sur glace
- progresser de façon conjointe.
- Nous disposons de connaissances et de métriques pour valider la pertinence des termes de correction de la Hauteur altimétrique sur océan
- → quid de l'extension des conclusions océano à la glaciologie?

Cadre:

- Thèse conjointe CLS/LEGOS va débuter à l'automne (Aurélie Michel)
- Activités SALP: des tests sont effectués pour chaque nouveau standard disponible: caractérisation de la qualité avec des métriques liées au contenu océanique
 - Ex applicable à toutes les surfaces: qualité des orbites
- Projet ESA CCI (Climate Change Initiative): étude et sélection d'une série d'algorithmes/ de standards pour chaque terme de la SSH → recommandations
 - Ex concret: de la correction de tropo humide

Correction de troposphère humide modèle

- Un des postes d'erreur de la mesure assez mal connu sur glace (cf pres E. Obligis).
- Pour le moment modèle = seul correction disponible.
- Comparaisons Radiomètre/ECMWF operationel/ERA Interim/ NCEP → forte recommandation ERA-Interim comme référence commune pour analyse des corrections issues des radiomètres
 - Stabilité/fiabilité long terme
 - Gain en variance aux points de croisement (temporel / spatial)



Stabilité/fiabilité long terme

- Suivis de la correction tropospherique issue de plusieurs modèles/radiometres:
- → Le signal interannuel n'est pas vu de la meme façon par tous les modeles/radiometres

L'assechement lié a La Nina (2008) semble "manqué" par le model ECMWF opérationel Quid des effets longs termes aux hautes latitudes sur glace?


Gain en variance aux points de croisement Temporel

Pour les applications méso-échelle

- Deterioration de la SSH aux points de croisment avec tous les modèles par rapport aux radiomètres mais
- ERA Interim est meilleur que le modele ECMWF operationel lui meme meilleur que les réanalyses NCEP

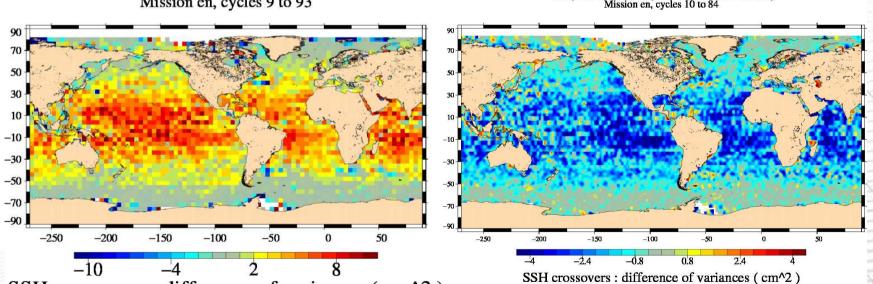
⇒Quel est l'impact aux hautes latitudes?

SSH crossovers : VAR(SSH with Model) - VAR(SSH with Radiometer)
Mission tp, cycles 11 to 480

Gain en variance aux points de croisement **Spatial**

•D'un point de vue spatial, meme conclusion sur la qualité des modeles/radiomètres ERA Interim est meilleur que le modele ECMWF operationel lui meme meilleur que les réanalyses NCEP

> ⇒Forte réduction de la variance (> 5 cm²) dans les zones tropicales ⇒Quel est l'impact aux hautes latitudes?


> > Gain en variance aux points de croisement

Var(SSH avec MWR) < Var(SSH avec ECMWF op)

Mission en, cycles 9 to 93

Var(SSH avec ECMWF op) > Var(SSH avec ECMWF ERA Interim)

Mission en, cycles 10 to 84

SSH crossovers : difference of variances (cm²)

Conclusions

- → quid de l'extension des conclusions océano à la glaciologie?
- En ce qui concerne la correction de troposphere humide les diagnostiques dédiés a l'océano donnent une meilleure confiance dans la correction ERA-Interim d'ECMWF que dans son équivalent opérationnel, ou que dans la réanalyse NCEP.
- Un retour de la communauté glaciologie serait intéressant pour affiner / adapter les diagnostiques à cet autre type de surface

