Cnes

The CFOSAT project

C. Tison⁽¹⁾, D. Hauser⁽²⁾, A. Mouche⁽³⁾

⁽¹⁾ CNES, France
 ⁽²⁾ OVSQ, CNRS, LATMOS-IPSL, France
 ⁽³⁾ IFREMER, LOS, France

celine.tison@cnes.fr

China

What is the CFOSAT mission?

Mission objectives and scientific requirements

Description of CFOSAT satellite

CFOSAT products
 Focus on Ice applications

- CFOSAT: an innovative China/France mission for oceanography
- Launch: mid-2018
- Joint measurements of oceanic wind and waves
 - SWIM: a wave scatterometer (new instrument)
 - SCAT: a wind scatterometer (fan beam concept)

ATM

This mission is a "world première"

- SWIM, new spaceborne instrument with technology innovations (antenna, onboard digital processing)
- SCAT, new concept of wind scatterometer
- Access to 2D wave spectrum with high angular resolution and with global scale
- ► Joint measurements of winds and waves

Scientific objectives

Global observation of ocean wind and waves with high temporal coverage

►Why?

To improve wind and wave forecast and sea-state monitoring To improve the knowledge and the modeling of sea-surface processes To get a simultaneous wind and wave measures for coupling effects characterization

Secondary objectives (for SWIM)

Land surface monitoring (soil moisture and soil roughness)

Polar ice sheet characteristics

Satellite

間

► Orbit

Sun synchronous Local time at descending node AM 7:00 Altitude at the equator 519 km Cycle duration 13 days

► Mass and dimensions Mass ~600 kg Primary structure ~1.5mx1.5mx1.5m

¢cnes

Scientific requirements

Mission

Minimum duration of 3 yearsGlobal coverage over the oceans (polar orbit)Data available in near-real time

► SWIM

Directional wave spectra from incidences 6° to 10°

To be measured in the wavelength range 70m-500m

With a 10% accuracy on wavelength, 15° accuracy on wave propagation direction

With a 15% accuracy on spectral level around the peak of the spectrum

Significant wave height and wind speed from nadir

10% on SWH (or 50 cm whichever is better) rms <2 m/s on wind speed

Normalized radar cross-section form 0° to 10°

Absolute accurcay of $\pm 1 \text{ dB}$

Relative accuracy between incidences \pm 0.1 dB

► SCAT

CFØSAT

Wind vector

Wind speed range and precision: 2m/s or 10% (larger) @5~24m/s

Wind direction precision: 20 °

Backscattering coefficient precision : 0.5dB

Surface resolution

50km (standard product)

25km(experimental product)

Payloads

Two scientific payloads
SWIM: Surface Waves Investigation and Monitoring
SCAT: wind SCATterometer

► SWIM

Cones

Surface Waves Investigation and Monitoring Real aperture radar in Ku-band 6 incidence angles: 0°, 2°, 4°, 6°, 8° et 10°

Antenna diameter: 90 cm (~2° aperture) Polarization VV Rotation speed: 5.7 rpm

Power: 120 W Useful bandwidth: 320MHz Pulse duration: 50 µs PRF: 2 - 7 kHz

Cnes

► Two scientific payloads

SWIM: Surface Waves Investigation and Monitoring

SCAT: wind SCATterometer

► SCAT

- Wind SCATterometer Real aperture radar in Ku-band Fan beam concept Incidence angles (on ground): 20° -65°
 - Antenna size: 1.2mx0.4m
 - Alternate polarization: HH-VV Rotation speed: 3.2 rpm

Power: 120 W Useful bandwidth: 0.5 MHz

Ground system

Cones

SCAT products

Level		Definition	Associated processing
Level 1	1b	Normalized radar cross section Backscatter power (Time-Ordered Earth-Located Sigma0s)	 Internal calibration Apply time difference correction Assignment of ephemeris and attitude information to each frame
Level 2	2a	Sigma0 (grouped by wind vector cell (WVC) rows, 25 km x 25 km swath grid) Kp Sigma0 over land and ice	 Calculate cell location& geometry Calculate surface flags Calculate the quality and the uncertainty of the sigma0 values Calculate sigma0 and associated Quantities (Calibrated data for wind retrieval)
	2b	Wind Vector (Ocean Wind Vectors grouped by rows of WVC, in 50 x 50 km Swath Grid)	 Perform sigma – 0 Grouping Calculate wind vectors Perform ambiguity removal

Products suitable to ice studies

For ice studies, the following products will be available:

- SWIM L1a:
 - σ⁰ for each radar gate with associated geolocalisation
 - Nadir waveform
- SWIM L2:
 - Nadir wave form retracking outputs:
 - ICE-NEW outputs on sea ice
 - ICE1 on continental surface
 - σ0 profiles (averaged in elevation and azimuth)
- SCAT L1b:
 - HH and VV σ^0 averaged over cells of 50 x 50 km –tentatively 25 x 25 km)

Examples of L1a σ^0 data over sea surface

Examples of L2 data over sea surface

Ifremer Analysis Example of GPM Acquisition over Sea Ice 40°S 40°S 120°E 95°E 70°E 12 16 20 24 -8 O 4 8 NRCS [dB] NRCS fall-off over sea ice is faster than over seas

Strong specular contribution for sea ice. Less Roughness than over seas

Travaux A. Mouche, IFREMER

Both sea ice-extent and NRCS spatial variability are observed in Ku and Ka-Band (not shown) at low incidence angles

Travaux A. Mouche, IFREMER

2014/03

2014/07

Sea ice extent evolution and NRCS variability in space and time can be monitored with respect to time

2015/02 Travaux A. Mouche, IFREMER

Some potential objectives in glaciology(1/2)

B. Legresy, F. Remy, M. Dechambre, F. Ardhuin, A. Mouche, D. Hauser

► Sea ice

cnes

CFOSAT: interesting **complement to other missions** (SCAT, in C and Ku, Microwave Radiometry, C-S-Ku-Ka Band altimetry)

- \rightarrow diversity of incidence and azimuth (0-10 and 20-50°)
- \rightarrow sigma0 at high resolution
- Better characterize *sea-ice edge detection*
- Better characterize sea ice properties (age?, roughness- deformation, presence of snow over ice ?)
- Investigation on sea ice deformation due to underlying long waves travelling from the free ocean surface to the ice-covered region
- Ice thickness information from the evolution of the long ocean wave properties (dominant wave length) at the transition between open ocean and ice zone
- Interactions between waves and ice edge (breaking,...)

Some potential objectives in glaciology(2/2)

B. Legresy, F. Remy, M. Dechambre, F. Ardhuin, A. Mouche, D. Hauser

► Polar Ice cap

cnes

- Document anisotropy of ice sheet linked to catabic winds (diversity of azimuth angles)
- Better estimate *penetration depth of the e.m. wavelength* (TBC)
- Add new observations (in addition to radiometry and altimetry) to constrain electromagnetic models based on *description of the snow cover* (density, grains, roughness,..)

► Icebergs

- Detection in the signal (resolution cell of about 30 m x 20 km)?
- If yes, study of interaction with wind and wave fields,...

Participation of specialists in glaciology is welcome!!

谢谢, Merci

The China-French CFOSAT _ scientific and technical team meeting