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B. Halnes (J PL) The double geodetic site in Corsica (Aspretto-Senetosa) has been used
the Jason-1 mission.
1999) have been performed to measure the marine geoid slope
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from the coast to 20 km off Senetosa cape - in this area the geoid
slope can reach 6 cm/km. This technique is describe in more

The double geodetic Corsica site (Aspretto-Senetosa, Plate 1) is dedicated to the absolute calibration experiment in the
framework of the Jason-1 mission. While Aspretto (near Ajaccio) will be used to concentrate satellite tracking techniques
(SLR, DORIS, GPS) to locally improve orbit, Senetosa permits the realization of the closure equation (tige gauges /

5] o op O details in the poster “Leveling the Sea Surface using a GPS
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from 20 km off-shore to the coast using only coastal tide gauges. For doing this, a local marine geoid has been determined

operations is that all the ground segment (tide gauges and

using kinematic GPS (see “Leveling the Sea Surface using a GPS Catamaran” poster). Three permanent tide gauges marine geoid) of the closure equation has been linked to ITRF
. . . . C C : : : : : : : 96 with a precision of the order of 1 cm.
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In this part we want to study the possible correlation with some parameters

linked to the calibration process. Figures 2a and 2b give respectively the 1g§ Mg R LTl g g N AR LTS I DPANA R 25 Figure 8. T/P bias at Harvest and Senetosa for 13 common cycles.
' ' ' librati lue (bias) and its standard deviation function of (from ¢ sk ; [ Upper panel shows the mean values per cycles for each tide gauge.
Photo 1. Tide gauge leveling at M3 location. e e €viation as a function o om top 1% 15 0 Tower panel shows the standard deviation of corrected altimetric sea heights.
to bottom):
B Point of Closest Approach (PCA) distan.ce (across-track, negative for west) :g Figure 7 shows calibration results for ALT altimeter (Side A&B). In the upper panel, bias determinations
- PO.lIlt of Closest Measurement (PCM) distance 00,5 per cycle are plotted for each tide gauges location. Results between tide gauges are coherent within 1 cm.
- Wind Speed . : Statistics for each altimeter (ALT A&B and SSALT) are listed in Table 1. The difference between ALT-A
- Significant W?w? Helgh.t (SWH) and ALT-B is about -20.2 mm (SSHALTB - SSHA1TA). For comparison the difference found in
- Standard deviation of tide gauge measurements ’

AVISO/CALVAL (1999) using SLA relative to cycle 235 is -13. mm. However, the very low number of
determinations for either ALT-B or SSALT do not permit to be very confident in the results.

The lower panel shows the standard deviation for each bias determination which mainly reflects the
standard deviation of 10 Hz altimetric data. The mean value of this standard deviation is 48 mm but clearly
shows a trend (yellow dashed line) which is probably linked to side A degradation. The maximum value
(cycle 241, side B) is probably due to very flat sea conditions (see Figure 2b).

Figure 8 shows comparison for ALT-A bias between our results and Harvest ones, for common cycles (13).

- Number of 10 Hz altimetric data used
- Standard deviation of 10 Hz altimetric data.

Calibration (mm)

No clear correlation have been evidenced except for very low wind speed (and
then SWH, cycle 241). Tide gauges data dispersion and across track distance
AVISO/CALVAL, "Side B TOPEX Altimeter Evaluation", seems to have very low impacts. The standard deviation of bias determination
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