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Altimeter Studies of Boundary Currents
Eastern Pacific and Southeast Atlantic
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Summer and Winter - “Absolute Heights”
The seasonal variability in altimeter heights is shown below with the long-term means
removed. In the panels to the left and right we have added a mean height to partially
restore the mean. In the NE Pacific, we add the climatological mean dynamic height
relative to 500 m calculated from the Levitus T-S climatology. In the SE Pacific we add
the 12-year mean surface height (1986-1997) from the POCM model. This restores per-
manent features such as the equatorward eastern boundary currents, the Alaska Gyre
and Antarctic Circumpolar Current, but makes subtle changes harder to detect. SSH is
depicted by both colors (red=high) and contours.
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i‘ ( | ) J Over 7 years of combined altimeter data from Geosat, T/P, ERS-1/2 from the Pathfinder data set are combined to form 2:month — } : < ]

fields showing the seasonal anomalies (long-term mean removed) describing the temporal evolution of SSH during the year i
both the NE and SE Pacific. SSH is represented by color (red=high) and contours (Cl=2cm). b
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In the NE Pacific the signals are primarily confined to the boundaries north of 20N. South of 20N, the lower SSH associate
with the ITCZ and NECC moves seasonally, creating a large, zonal signal across the Pacific. There is no similar signal pea
location of the North Pacific Current (West Wind Drift), indicating that there is very little annual variability in position or
strength of the North Pacific Current. The primary seasonal cycle is a spin-up of the Alaska Gyre in winter, in phase with the) &
strengthening of the Aleutian Low. At this time the California Current weakens and reverses next to the coast. In spring-s q:;
the Aleutian Low weakens, the North Pacific High strengthens and the California Current strengthens while the Alaska G / :

weakens. It is not believed that the Alaska Gyre reverses except for equatorward flow along British Columbia on the eastgfl

margin (see the fields with mean heights added at the top of the poster). Note that seasonal changes from poleward to [
equatorward flow appear to originate off Central America and move poleward. sos 80
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In the SE Pacificthere is no equivalent of the ITCZ and so the SECC is not a strong feature in the seasonal variability. A%@g-
ing to the literature, the upwelling system off northern Peru is maximum in austral winter (July-August), while the upwelling

system off central Chile (30-45S) is maximum in austral summer (January-February). These signals are present in the altjm
fields, but much weaker than the seasonal changes in the NE Pacific. |
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