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Table 2. Tracking data residual RMS when orbits are computed with various gravity field models.
Table 1. Data in TEG-4 solution, compared to TEG-3.
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Figure 1. Zonal currents from Levitus and POCM DOT and drifter buoys (left) and T/P DOT with respect to geoid models (right). Eastward currents are positive.
Abstract e DOT coefficients were not estimated simultaneously; this Marine Geoid and Ocean Circulation The speed of the ACC from the Levitus DOT is significantly Conclusions

A new gravity field model complete to degree and order 180 has
been computed. The model incorporates an improved reference

enabled the altimeter data to adjust the long wavelength
components of the gravity field.

This poster presents results from two preliminary TEG-4 models, a

There 1s more differentiation between the models 1n the marine
geold and the dynamic ocean topography. The performance of the

slower than in the other maps due to the lack of data in the southern
hemisphere. Also, there 1s a fairly strong countercurrent south of
the equator in the Pacific in the POCM data that does not appear in
the other maps. The currents from the drifter buoys tend to be

The TEG-4Cp gravity model produces a better marine geoid than
previous models in terms of recovering the long-wavelength ocean

Table 3. Statistics of velocity comparisons.
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surface gravity data in a joint solution and simultaneously
estimating the spherical harmonic coefficients of the gravity field
and dynamic ocean topography (DOT). The differences in the new
TEG-4 models are:

e New satellite tracking with higher degree and order partials
(Table 1).

e Complete to degree and order 180.

e An a priort DOT model based on output from a General Ocean
Circulation Model (GOCM).

 Aninnovative, faster method to compute normal equations from
surface geodetic data [Kim and Tapley, 1999].

e Altimetry data via a global mean sea surface (MSS) model
computed from TOPEX/Poseidon (T/P), ERS-1, ERS-2, and
Geosat data.

The satellite orbit tests must always be evaluated with caution. The
arc lengths and estimated parameters for each case were designed
to reduce the contribution of surface forces while avoiding
excessive parameterization, but the choice is highly subjective. The
GFZ-1 satellite, in particular, i1s strongly perturbed by atmospheric
drag at its low altitude (400 km), and the SLR tracking is sparse, so
these evaluations can differ considerably from tests conducted by
others. In addition, all the tests were conducted with an ocean tide
model based on the CSR 3.0 model, which may tend to bias the
results slightly in favor of models produced by CSR. Some
conclusions, however, can be drawn. For many satellites, all the
models perform comparably, and improvements in their fits are
increasingly difficult. No one model appears to be able to fit all the
satellites best. Finally, it does appear that 1s still possible to obtain
some improvement in the marine geoid as well as in the overall
orbit fits beyond the models currently available.

geostrophic currents are computed from the dynamic topography
except within + 2° of the equator, where the Coriolis parameter

approaches zero. The currents were computed in the same manner
from 1° grids of POCM and Levitus [1982].

Since the POCM DOT was used as the a priort DOT in the TEG-4
solutions, the comparisons with the Levitus [1982] hydrography
should give more conservative estimates of the error in TEG-4.

Figure 1 shows the zonal velocities from the altimeter DOT,
POCM and Levitus DOT, and drifter buoys. Meridional velocities
are not shown because they are smaller, and the zonal maps more
clearly show changes in the equatorial regions. The maps from the
Levitus and POCM DOT and the drifter buoys all show similar
features: the Kuroshio extension, the Gulf Stream, the zonal
currents and countercurrents in the tropics, and the Antarctic
Circumpolar Current (ACC).

and the Atlantic. The Pacific NEC 1s in the proper position, with
the strongest currents in the western portion of the basin.

There are some residual large and apparently erroneous signals
around Indonesia in TEG-4Cp. We have traced this to a problem 1n
the error values applied to the a prior1 DOT used 1n the solution.
We are in the process of correcting this, and expect significant
improvements in this area in the final TEG-4 model.

The standard deviation (o) and correlation (p) of velocity
components for all the altimetric DOTs relative to POCM, Levitus
[1982] are given in Table 3. For comparison, the values
differencing POCM and Levitus [1982] are also given.
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