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ABSTRACT

The largest single source of error for mean sea level estimation
1s the electromagnetic (EM) bias. Most models that are widely
used are derived using a linear combination of wind speed and
significant wave height. These models still leave much room
for improvement. In an effort to improve the EM bias estima-
tion a nonparametric technique has been applied to the satellite
and in situ tower data. Using this technique on both types of
data sets yield results that are very similar. Additionally, an-
other parameter, the wave slope, improves the EM bias esti-
mates. The best case of the nonparametric technique used with
the wave slope provides a standard deviation of error of under
21 cm.

NONPARAMETRIC ESTIMATION

Nonparametric regression (NPR) 1s a method to statistically
smooth a data set such that a valid estimate for one variable 1s
available over a chosen spacing of different variables. For the
derivation in two dimensions, U and H are used to estimate [3.

(U,H,,B,), (U,H,B), ..., (U,H B ) form an independent,
indentically distributed sample from a population (U,H,[3).

It 1s desired to estimate the regression function

B(x) = E[P|x = (U,H)]

This equation 1s expanded about the point (U ,H ) using a Taylor’s
series expansion
B(x) =a +a (U-U )+ a (H-H )

where a, and a, are partial derivatives of B(x ) with respect to
U and H respectively. The NPR estimate 1s found by solving
the least squares problem

minaﬂ,al,aZZ{Bi -a,-a,(U-U)) - aZ(H-HO)}ZKh(Xi-Xo)
where K , 1s the kernel tfunction.

The nonparametric regression chosen for this paper 1s the Local
Linear Regression (LLR). Let
A=(a,a, a)’,

X =[1U-U, H-H,
1U-U H-H,

1 U-U H-H ],
and
W =diag{K (x-X )}

The minimum least squares solution for the LLR 1s then
A =(X"WX)'XTWRT

The purpose of the kernel 1s to smooth the EM bias estimation
over the (U,H) plane. The two dimensional Gaussian kernel

chosen for this study 1s of the form
K (x-X) = C(exp[-(U-U,)*/2h *-(H-H)?/2h_*])

where C 1s a constant to normalize the kernel function.
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SATELLITE vs. IN SITU DATA

Non-parametric regression was applied to data from two tower
experiments, the Gulf of Mexico Experiment (GME) and the Bass
Strait, Australia Experiment (BSE), as well as the combined data
set, TOT. Additionally, non-parametric analysis was applied to
data from the TOPEX/Poseidon satellite. Using the typical pa-
rameters of wind speed, U, and significant wave height, H, for
the EM bias estimation yielded the following models.
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As the plots show, the in situ data and satellite data create models
that are very similar. The general forms of the graphs show strong
correlations, as well as the actual values presented. It can also be
seen that the plots from the individual experiments show regional
variations. This regional variation will cause models from global
data sets to be 1n error proportional to the regional differences.

Error Bounds Using Tower Data

Wave Height (m)
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The 1n situ data provides a means to put “error bars” on the indi-
vidual and combined data sets. The standard deviation of the bias
for the data from each of the grid spaces in the previous plots 1s
shown above. It can be seen that the typical values for the “error
bars” tends to be close to 1 cm, with very few being larger than
1.5 cm.

WAVE SLOPE PARAMETER

EM bias models using the wind speed and significant wave
height leave undesirably large amounts of error. In an effort to
improve the bais estimation, the correlation of the wave slope
parameter was calculated from the in situ data sets.

To calculate the wave slope, first the deep water dispersion rela-
tion 1s used to estimate the wave number, k,
k= (2nf)’
g
where g = 9.8 m/s? is the gravitational constant. Then the wave
displacement spectrum, is obtained by computing the power
spectral density, d(f), of the wave displacement vector. Using

the wave number and @D(f) the slope spectrum is
W(F) = QafYd(f)
g2
The rms slope 1s then calculated using a discrete method,

S = [(f/NpppZ {[2nf) /"] O(f) }
= [({/Neep)Z [P ()]
where N___ corresponds to the number of points in the FFT
and f_1s the sample frequency.

Using the combined data set, the ability of the wave slope to
create accurate estimates of the EM bias 1s demonstrated in
the following graphic. In similar manner as the plots of the
wind speed and significant wave height plot against the con-
tours of the bias, the combination of any two of the three pa-
rameters, wind speed, U, significant wave height, H, and
wave slope, S.
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The improvement 1s more apparent when all three parameters
are used to estimate the EM bias.

Three Parameter Model Performance
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Using S with the nonparametric estimation technique provides
excellent estimates of the normalized EM bias. These estimates
are better than estimates using just U and H, and also show
promise for improving the estimates over traditional parametric
models.



