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INTRODUCTION
In an ocean general circulation model using the rigid lid condition, the sea 
level is a diagnostic variable. That is, while it may be retrieved from the 
model, the evolution of the system is not modified by any correction of the 
values of the sea level. In this context, assimilation of sea level observations 
requires a method able to modify the state of the variables affecting the time 
evolution of the system. The methodology proposed here is derived from the 
continuous form of the Kalman filter. In the case of maximum simplification 
of the error covariance matrices, an equation combining the concepts of 
nudging and the adjoint of the observation operator arises. The latter allows a 
natural projection from a diagnostic variable, e.g. sea level, into corrections 
of dynamically active variables, e.g. temperature and salinity. The novelty of 
the methodology proposed here is that model corrections to temperature 
and salinity are not parameterized by any empirical/statistical 
relationship between diagnostic and prognostic variables, rather the 
methodology exploits the physical relationships of the model itself to 
vertically extrapolate the sea level information. The ability and limitations 
of the method to assimilate sea level observations into an ocean circulation 
model are examined here. 

The method is tested using twin experiments. 
A reference simulation of the model sets the 
ocean to be reconstructed. Then, two 
simulations start from false initial conditions 
(using the same forcing). The assimilation of 
sea level is applied to one but not to the other 
(free). Tropical dynamics is strongly 
controlled by winds. To reduce the  
convergence between the reference and free 
simulations, a stochastic noise is added to the 
wind field of reference. The spatial structure 
of the noise is

c(i,j) = exp [- (xi-xj) 2/Lx
2 – (yi-yj) 2/Ly

2]
With Lx=10o, Ly=4o. The first ten modes of 
such a covariance matrix are shown on the 
right. The stochastic wind noise is constructed 
as

δW = wo Σ λ k
½ N k η k

Where λ are the eigenvalues of the covariance 
matrix, N are the eigenvectors, and η is a 
Gaussian noise with zero mean and unit 
variance.

MODEL
The model used here is the a reduced gravity, primitive equation model, 
twenty layers, and explicit evolution of temperature and salinity. Each time 
step, sea level is calculated as shown below. Thus, even if sea level is a 
diagnostic variable, it is related to the prognostic variables via the state 
equation.  

THE DATA ASSIMILATION
The equations of the continuous Kalman filter are

x’ = Ax + PHT R-1 (y – Hx)
P’ = AP + PAT + Q – PHT R-1 HP

Where x is the vector of prognostic variables, A is a linear transition matrix, 
P is the expected error of the state of the system, Q is the expected error of  
the transition matrix, R is the expected error of the observations, and H is 
the observation operator. The prime indicates time derivation. The method 
investigated here is based on the maximum simplification of these 
equations. Setting aside the time evolution of P, and supposing that only a 
rough estimate of the order of magnitude of the errors is known, P = p2 I
and R = r2 I, the time evolution of the system is given by 

x’ = Ax + µHT (y – Hx)  with µ = p2 / τ r2

where τ is a relaxation time scale. This equation may be used to combine 
the adjoint of the observation operator with the nudging technique. In the 
approach used here, the adjoint of the observation operator is used to 
project the information about the misfit in sea level to corrections in 
temperature, salinity and layer depths:

The convergence of the sea level (ssh) for one year is shown below. The 
black line corresponds to the free simulation. The red line corresponds to the 
simulation with assimilation of sea level. The results display the 
convergence of  the system related to the fact that these simulations are 
forced with the same fields as the reference simulation. The larger 
convergence of the assimilation indicates the beneficial role of the data 
assimilation scheme.

RESULTS

However, the method is shown to fail in the vertical extrapolation of the 
vertical profiles of temperature and salinity (Figures below). That is, the 
method modifies the deep ocean in order to match the sea level, but imposes 
invalid corrections on the vertical structure of the water column. Such a 
behavior is found to be insensitive to different choices of initial conditions, 
nudging amplitude, amplitude of the stochastic wind forcing, or the technique 
used to introduce the corrections of temperature (T), salinity (S), and layer 
depth (H) into the model equations.

CONCLUSIONS
A method aiming to assimilate diagnostic variables has been tested by 
assimilating ssh into a model of the tropical Pacific Ocean. The method is 
based on the maximum simplification of the continuous version of the 
Kalman filter equations. While the method is able to reduce the error in ssh, it 
increases the error of the deep ocean. That is, the adjoint of the observation 
operator is not enough, by itself, to identify the unique solution of the system, 
and an estimate of the error of the prognostic variables, matrix P, is required. 
Note that the information in P refers to the errors of T, S, and H, but not to the 
relationship between these variables and ssh. That is, the extrapolation of the 
ssh information is decoupled in a vertical propagation using the adjoint of H, 
and a weighted correction based on the information in P. Therefore, a more 
realistic parameterization of the error matrix P is required that captures the 3-
D structure of the error covariance. 
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