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e YAW STEERING, or viceversa. Because these happen usually every 60 days
PR E (the periodicity of the orbit plane to the Sun direction), then this is also the peri-
odicity of the jumps, which have been present since launch. TMR data more
13 E ] ] closely match SSMI or TMI data. During ‘Sinusoidal’ yaw steering, TMR mea-
S e i ocanl? " § W sures more vapor. In 1993, the better match to SSM/I is during ‘fixed yaw steer-

e e S, im0 S R > - ing’ times. However, the difference plots also show 3 points in time of the well-
J i 3 known TMR drift, and by 2002 the better fit is during ‘sinusoidal steering’
because all TMR data measure less vapor than just after launch.
While all internal temperatures also jump at these manouever times, the algo-

rithm to retrieve path delay is supposed to correct for such changes in tempera-

T — o ture. This effect also causes PD changes at specific local times.
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For Jason, we performed a similar analysis. It shows JMR measures ~ 9 mm

TR SSML PP G, TOIR 5250 D=1 O [ T e TR S PP G TR 677 Do O shorter (less vapor), on a global average, than either SSM/I or TMI. Clearly the
global average masks a distinct spatial pattern. Although there are hints of simi-
lar jumps at satellite manoeuvers, their effect on the actual path delay is <2 mm.
Since JMR at this point awaits calibration, these results only point out the need
for further in-flight calibraiton.




