

Large-scale intraseasonal variability in the global ocean

Rui M. Ponte

Atmospheric and Environmental Research, Inc.

With contributions from: L.-L. Fu, I. Fukumori, S. Gille, C. Hughes

An overview talk prepared for the joint TOPEX/Poseidon and Jason-1 Science Working Team Meeting in Arles, France, November 2003

- Spectral domain
 - Scales of 500 km and longer, to differentiate from mesoscale
 - Periods shorter than 6 months (subseasonal, not just intraseasonal)
- Some signals treated elsewhere
 - Tropical waves (Picaut et al.)
 - Planetary waves (Chelton et al.)
 - Tides (Le Provost et al.)
- Our neck of the oceans
 - Truly large-scale (basin, global)
 - Locally confined, mid and high latitudes
 - Barotropic
 - Down to daily periods

Some aspects of the signal

aer

Atmospheric and Environmental Research, Inc.

LARGE SCALE 20-100 DAY SEA SURFACE HEIGHT VARIABILITY

Global picture of the large-scale variability, missing before satellite altimetry, reveals clear patterns of enhanced energy and quieter regions, with strongest signals at mid and high latitudes and coastal regions (Fu & Smith 1996)

Strong short period signals

Model estimates of half-energy period for intraseasonal sea level fluctuations point to the presence of substantial variance at periods shorter than 20 days (Fukumori et al., 1998)

The story from tide gauges and BPRs

aei

Atmospheric and Environmental Research, Inc.

Similar results are seen from analysis of bottom pressure records

Gille & Hughes (2001)

Ratio of the aliased variance to the observed variance as function of frequency based on analysis of tide gauge data

Ponte & Lyard (2002)

Models and altimeter

Sea level simulated by barotropic models correlate well with altimeter observations

Substantial variance reduction with modelbased corrections

(Stammer et al., 2000; Tierney et al. 2000)

More than just wind forcing

Dynamic response to barometric pressure is clear at weekly and shorter periods

Pressure-driven dynamic sea level signals are more important than winddriven signals at the shortest periods

(Hirose et al. 2001; Tierney et al. 2000; Ponte 1994)

A hint of global resonance?

1st frequency domain EOF (30-36 hour band)

Ponte & Hirose (2003)

EOF explains close to 60% of variance in model

- Trapping of energy to Antarctica, North Pacific and North Atlantic
- Zonal wavenumber one, westward phase propagation in the Southern Ocean
- Several amphidromic points

...resembles many of the features of several of Platzman et al. modes

Have we seen an ocean mode lately?

BPR locations

aer

Atmospheric and Environmental Research, Inc.

Peak in coherence over 1-2 day periods in both BPR data and model

Phase consistent with zonal wave number one disturbance westward propagation

Zonally-lagged coherence

Model dependence on bottom friction

• Model Q~24, stronger dissipation observed

• Shallow regions and nonlinear bottom friction, damping by sea ice cover, scattering into baroclinic motion or other processes possibly important

Pressure forcing, observed and simulated bottom pressure spectra

4-6 day non-equilibrium response revisited

aer

Atmospheric and Environmental Research, Inc.

- Not confined to the Pacific
- Nearly out-of-phase oscillation between Atlantic and Pacific

• Forced by Rossby-Haurwitz atmospheric pressure wave

(Hirose et al. 2001; Ponte 1997)

Off-resonant, forced response

(Hirose et al. 2001)

- Sufficiently large-scale to be seen in altimeter
- Dynamic model better than IB correction
- No strong dependence on friction or time scale
- Continents restrict inter-basin mass exchange
- Dynamics similar to long-period tides

At longer periods, vorticity matters

60 45 30 15-0 --15--30 -45--60 120 210 240 270 30 60 90 150 180 300 330 0 0.5 2.5 0.0 1.0 1.5 2.0 3.0 STANDARD DEVIATION (CM)

LARGE SCALE 20-100 DAY SEA SURFACE HEIGHT VARIABILITY

Area 1 – free barotropic waves around a seamount

(Fu & Smith, 1996)

Areas 2, 3, 4 – relative vorticity driven by wind stress curl

A propagating dipole in the Argentine Basin

Atmospheric and Environmental Research, Inc.

aer

Fu et al. (2001)

Spatial phase

Topographic mode at 25-day period

CEOF

Observation

Model simulation

Variability in the Bellingshausen basin

1st CEOF (high-passed sea level anomalies)

- Homogeneous phase
- Largest variability over weakest f/H gradients
- Well correlated to wind stress curl

Sea level and wind curl

aer

Atmospheric and Environmental Research, Inc.

Geostrophic modes or something else?

Model response function (sea level/wind curl)

Webb & de Cuevas(2003)

- Response function suggestive of a resonance close to zero frequency
- Strong damping (time scales ~ 3 days) but poor resolution at long periods
- Possible role of baroclinic effects and higher order dynamics at long periods

Observed, 9-month running mean

Observed, high frequency residual

1994

-3 2

a, -1

-21 -3

> -61 1992

1993

- Oceans can push the Earth around and contribute significantly to its wobble
- Variations in the Earth's oblateness can come from large-scale ocean mass signals

Coherence with polar motion

Hughes & Stepanov

- Much new knowledge from ability to observe and model large-scale variability globally
- Strong variability at shortest periods and some aliasing surprises
- Excitation of resonances in a variety of regimes and time scales
- More than just inverted barometer response at short periods, dynamical importance of pressure forcing
- The oceans as big player in the Earth's affairs