

Tropical-subtropical exchange: contrasting mean & variability

Tong Lee, Ichiro Fukumori, Dimitris Menemenlis, and Lee-Lueng Fu Jet Propulsion Laboratory, California Institute of Technology

Introduction

Warm surface waters exported out of the tropics via Ekman flow are replenished by colder waters of extratropical origins in the pycnocline. Such an exchange affects tropical upper-ocean heat content and thus the climate. Previous studies primarily addressed time-mean exchange. In this study, TOPEX/Poseidon data & an assimilation product are used to examine the variability of exchange. Specifically, interannual variability of pycnocline transports via low-latitude western boundary currents (LLWBCs) & through the interior are contrasted with their mean values. The analysis focuses on latitudes critical to exchange in the Pacific (10N & 10S), Indian (8.5S), and the Atlantic (7S) Oceans (Fig.1). The assimilation product is available via http://www-ecco-group.org.

Time Mean

Consistent with previous studies, time-mean pycnocline transport via LLWBC estimated by the assimilation is substantially larger than that via the interior (Table 1); mean interior flow is generally in the same direction of the boundary flow.

Variability

Anomalies of zonal sea level slope across LLWBCs and the interior are generally anti-correlated with each other both for the T/P data and for the assimilation (Fig.2), suggesting that the two have the same feature in geostrophic flow near the top of the pycnocline. The assimilation propagates the constraint by T/P data into the pycnocline.

Indeed, anomalies of pycnocline transports inferred from the assimilation show that **(1)** boundary and interior pycnocline flows are anti-correlated and **(2)** the latter has a somewhat larger variability (Table 1).

Mechanisms

Lee and Fukumori (2003) provided a dynamical explanation of (1) and (2) in the Pacific for interannual-to-decadal time scales: a combined effect of near-equatorial wind on shallow meridional circulation and off-equatorial wind stress curl on horizontal circulation. Whether similar processes are at work in the Indian and Atlantic Oceans need to be investigated.

Conclusion

Mean: boundary & interior transports generally in same direction; boundary transport > interior transport

Variability: boundary & interior transport generally out of phase; boundary transport < interior transport

Boundary pathway more important to time-mean exchange; interior pathway more important to variability of exchange.

Reference

Lee, T., I. Fukumori, 2003: Interannual-to-decadal variations of tropical-subtropical exchange in the Pacific Ocean: boundary vs. interior pycnocline transports. *J. Climate*, Vol. 16, No. 26, 4022-4042.

Figure 1 Schematic diagram of mean pycnocline flow involved in tropical-subtropical exchange.

Mean	Pacific	Pacific	Indian	Atlantic
Std. Dev.	10N	10S	8.5S	7S
Western	-15.4	9.8	11.0	13.0
boundary	3.9	3.3	1.2	0.4
Interior	-4.5	9.8	-4.5	0.4
	4.6	4.0	1.3	0.4

Figure 2 Anomalies of west-east sea level difference across the western boundary and interior tend to be anti-correlated to each other.

Fig. 3 Consistent with sea level slope (Fig.2), anomalies of pycnocline transports through western boundary and interior tend to be anti-correlated to each other.