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Jason-1, launched on December 7, 2001, is continuing the time series of centimeter level ocean topography observations as the follow-on to the highly successful TOPEX/POSEIDON (T/P) radar altimeter satellite. The precision orbit determination (POD) is a critical
component to meeting the ocean topography goals of the mission. Jason-1 is no exception and a 1 cm radial orbit accuracy goal has been set. This represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision
orbit determination (POD) is both achieving the 1 cm radial orbit accuracy and evaluating and validating the performance of the 1 cm orbit. Fortunately, Jason-1 POD can rely on four independent tracking data types including near continuous tracking data from the
dual frequency codeless BlackJack GPS receiver. In addition, to the enhanced GPS receiver, Jason-1 carries significantly improved SLR and DORIS tracking systems along with the altimeter itself.

We demonstrate the 1 cm radial orbit accuracy goal is being achieved using GPS data in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these
orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS and altimeter crossover differences) as either part of or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four
available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced
dynamic orbits based on SLR, DORIS and crossover data that are a significant improvement over the SLR and DORIS based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic
orbits.

POD Overview and Details
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POD Performance

Quantifying and Characterizing Orbit Error: Although the challe of timeter level POD is to quantify and characterize the orbit error, no direct measure of abso/ule orbit error exists. Therefore, we must use several different
performance tests to help us gauge and understand the orbit error contalned in the POD solutions. These orbit tests rely on the pr and lysis of all tracking data types available along with multiple solution techniques. In the

analysis presented here we have investigated the POD performance using five didate orbit solutic wuted at GSFC. For a detailed comparlson of the GSFC orb/ts to orbits computed at other centers see our poster: “Jason-1 POD
Evaluation and Orbit Comparison”, Zelensky et al.
Tracking Data Residual Analysis: The results shown in Table 5 demonstrate the GPS-based reduced dynamic solutions Table 5 Independent and Dependent Data Residual Summary for Cycles 8-24 () GPS RD Solution High Elevation Independent SLR Fit
representa significant lmprovement over any orbit solution relying solely on SLR and DORIS tracking data. The GPS RD 20 RMS = 1.25 cm
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Below with GGM01S (b) GPS RD Solution Radial Orbit Overlap Performance
The most direct measurement of radial orbit 2y is obtained from high SLR passes. Figure 3a SLR+DORIS Dyn. 0.419 1.524 5.859 0.129
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Force modeling errors, such as mean geographically correlated gravily error and measurement modeling GPSRD — 0.405 1.226 0.067/0.125 0.075/0.119 'g
errors, such as realizations of the Terrestrial Reference Frame (I'RF) can lmpart mean offfsets in the ECF frame which GPS+SLR RD o
can then adversely affect altimeter d of sea w (Ci et al. 1994 and 2
Rosborough et al. 1986). For each cycle we have computed the mean orbit difference in the equatorial plane (RSS of the SLR+DORIS+Xover RD — 0.946 5.396 059170271 -0.044/0.299 H
ECF X and ¥ mean) and in the Z direction. Table 6 shows the ge and of these over SLR+DORIS Dyn. £
cycles 8-24. The eg plane show the reduced t lque can be fully applied in Below with GGMO1S =
SLR+DORIS solutions to accommodate part of the known mean geographically correlated JGM3 gravity error. For the GPSRD — 1178 5.015 0.144/0.570 0.422/0.327 £
comparisons of the GPS RD solutions with SLR+DORIS based solutions (based on JGM3) the average of the mean Z ECF SLR+DORIS Dyn N
offfset is less than 1 mm with standard deviation of less than 4 mm with a ~120-day periodicity (Figure 4). The dynamic S
SLR+DORIS solutions have traditionally served to monitor orbit consistency along the Z axis with an expected resolution GPSRD — 0370 1122 0.089/0.113  0.131/0.112 o
of 5-6 mm. However, at the current level of agreement shown here it is not clear whether the SLR+DORIS or GPS-based GPS+SLR RD 3
orbits are dominating the remaining Z difference signal. Finally, we observe a ~4 mm mean Z offset bety P B e PO =
SLR+DORIS Dyn. and GPS RD solutions employing the GGMO1S gravily model as compared to less than 1 mm observed - - - —
using the JGM3 model. The results indicate the GGMO1S gravily model imparts a mean Z offset that is better
accommodated by the GPS RD solutions than the SLR+DORIS Dyn. solutions (Figure 4).

In addition to the statistics presented in Table 6, Figure 5 illustrates the improvements gamed when employing
the reduced dynamic technique in a SLR+DORIS based it Figure 6 illu the of the radial
orbit differences between our GPS+SLR RD and SLR+DORIS Dyn solutions employing the GGMO1S gravity model.
Figure 6 illustrates the worst case errors expected in our best performing orbits (GPS+SLR RD) because the orbit
difference is dominated by the errors in the SLR+DORIS Dyn. orbit. Never the agr these orbits
computed from different POD strategies and independent data is quite good.

Jason cycle

FIGURE 4. Mean ECF Z orbit difference per cycle.

The figure shows orbit consistency in the ECF Z axis between the GPS RD and SLR+DORIS Dyn.
solutions. The dynamic SLR+DORIS orbit has traditionally served to monitor orbit consistency along
the ECF Z axis with an expected resolution of 5-6 mm. The JGM3 based orbit differences demonstrate
less than | mm mean and less than 4 mm standard deviation of the ECF Z per cycle mean orbit
difference. Employing the GGMOIS gravity model imparts a mean Z offset which is better
accommodated in the GPS RD solutions,

Mean GPS+SLR RD — SLR+DORIS Dyn. (GGMOIS) (2.4 mm RMS) Stdev. GPS+SLR RD ~ SLR+DORIS Dyn. (GGMOIS) (10.0 mm RMS)

FIGURE 5 Radial orbit difference maps..
Radial orbit differences averaged over 5°x5° bins for cycles 8-24, show that the geographically correlated
JGM3 gravity error of about 5 mm observed in the SLR+DORIS dynamic solutions is significantly
diminished in the SLR+DORIS+Xover reduced-dynamic orbit comparison (figures 5a, 5b). The figures FIGURE 6 Radial orbit difference maps (GGMOIS).

Crossover Residual Analysis: Unlike orbit difference analysis, crossovers offer an important independent measure of
orbit error such as the anti-correlated gravity error (Rosborough et al., 1986 and Scharoo and Visser, 1998). Figure 7

show the geographically correlated JGM3 gravity error is significantly decreased when using the reduced  Rodial orbit diff GPS RD - SLRADORIS b d over 5% bins for ycles 824
pe 8-2 neg ¢ 0 A -1 1S adial orbit differences (Gl yn.) averaged over 5°x5° bins for cycles using
s";’ws a/””;;te;'mssover residuals ms/ yc/f'sd 4;:9’7yed Zve" 5?;;”’{:,“?’ ”"ree d’”””‘y’wﬁs’?o’% dynian‘fw technique even in a solution not computed from GPS Adala. The rcduc;:on in |hc‘stgndard GGMOI1S. Comparison to Figure 5 shows i reduction in correlated and anti-
solutions. The three maps show a progressive and significant reduction oi radial orbit error from the +DO deviation about the mean shown between the same two sets of orbit differences indicates the significant correlated gravity error has been obtained using GGMOIS. The differences are dominated by errors in
Dyn, to the GPS+SLR RD solution to the GPS*SLR RD using the GGMO1C gravity model. It should be noted that the removal of geographically anti-correlated gravity error and possibly tide and nonconservative force the SLR+DORIS solutions and therefore illustrate the worst case errors expected in our best performing

crossover data contain non-orbit signal including altimeter measurement error and oceanographic signal. Therefore, modeling error when using the reduced-dynamic technique (figures 5c, 5d). solutions (GPS+SLR RD).
caution should be exercised when interpreting these results as an absolute measure of radial orbit error. Nevertheless,
this ana/ysls can be used as a relative gauge of orbit error and clearly demonstrates the GPS RD solutions are

a ificant part of the JGM3 anti-correlated gravily error. Although the crossover variance is
dic ted by hic signal and altimeter modeling error, we have also observed a significant reduction in r a) SLR+DORIS Dyn. JGM?! (1 7.0 mm rr_ns)
crossover variance us}ng the GPS-based RD solutions, as previously shown in Table 5.
Figure 8 presents a time series of altimeter means per cycle. The SLR+DORIS

Dyn solutions show a larger variation and mean than the GPS-based RD orbits (also see Table 5). Of particular interest
in Figure 8, is the 60-day signature in the mean altimeter crossover residual time series clearly observed by the GPS-
based orbit solutions. Orbit solutions based on SLR+DORIS data also see this 6‘0-day s;gnatlme but are much nalster or

—+—SLR+DORIS Dyn. JGM3
—=—SLR+DORIS Dyn. GGM01S

have an additional signal superimposed. The data in Figure 8 also show that or T —*—GPS RD JGM3 A
the GGMO1S gravily model does not significantly change this signal lending input to Me notion that this signal is not % ! GPS+SLR RD GGMO01S
likely a force ing error. Fur this signal is observed in both SLR+DORIS and GPS-based e
solutions and because of its 60-day perlod/clly it is not likely due to mean offsets of the orbit in Me inertial ﬂ'ame This ©
s:gnal may be due to a non-om:t effect such as mis-modeling of surface tides, ic g 05
is that the significant improvement in orbit accuracy achieved mﬂ'r Me § /
GPS(-I-SLR)-based RD solutions will enable the resolution of new signals and features within the altimetry. =
E
@ 0
4
§
2
S 05
S

References:

Christensen, E.J., B.J. Haines and K.C. McColl, “Observations of geographically correlated orbit errors for Jason cycle
TOPEX/Poseidon using the global positioning system,” Geophysical Research Letters. 21(19): 2175-2178, 1994.
Haines, B., W. Bertiger, S. Desai, D. Kuang, T. Munson, L. Young and P. Willis, “Initial Orbit Determination Results for
Jason-1: Towards a 1-cm Orbit,” Journal of Navigation, in press, 2003.

Luthcke, S.B., N.P. Zelensky, D.D. Rowlands, F.G. Lemoine and T.A. Williams, “The 1-centimeter Orbit: Jason-1 Precision

FIGURE 8 Crossover residual mean time serics.
Altimeter crossover residual means, cycles 8-24, show that the least variation and mean are observed using the
GPS-based orbits. The interesting, approximately 60-day signature, observed using all of the orbits and best
seen with the GPS-based orbits, may be due (0 a non-orbit effect such as mis-modeling of surface tides,

Orbit Determination Using GPS, SLR, DORIS and Altimeter data,” Marine Geodesy, Special Issue on Jason-1 Oratmospheric pressure ¢
Calibration/Validation, Part 1, Vol. 26, No. 3-4, 2003.
Marshall, J.A., N.P. Zelensky, S.B. Luthcke, K.E. Rachlin, and R.G. Williamson, “The Temporal and Spatial
Characteristics of TOPEX/Poseidon Radial Orbit Error,”. Journal of Geophysical Research. 100(c12): 26,331-25,362,
1996.
Rosborough, G. W., “Satellite orbit perturbations due to the Geopotential,” Ph.D. dissertation, Center for Space
Research, The University of Texas at Austin, 1986. FIGURE 7 Average altimeter crossover residuals
Scharroo, R., and P.N.A.M Visser, “Precise orbit determination and gravity field improvement for the ERS satellites,” Crossover residuals averaged over 5°x5° bins for cycles 8-24 show radial orbit error primarily due to
Journal of Geophysical Research, 103: 8113-8127, 1998. anti-correlated gravity error. The three maps show a progressive and significant reduction of this error
from the dynamic SLR+DORIS to the GPS+SLR RD solutions to using the GGMO1 gravity model.
Unlike orbit differences, crossovers offer an independent measure of orbit error, but also contain non-
orbit signal.
Contact Information: Acknowledgements:
Scott B. Luthcke Presented at:
NASA Goddard Space Flight Center We wish to thank Bruce Haines for the JPL GPS APC map, several RINEX data sets, and discussions pertaining to the Jason-1 BlackJack GPS ! i
Space Geodesy Branch, Code 926 receiver. We also wish to thank Jean Paul Berthias and the CNES POD team for the pr satellite istic definitions and models and for Jason-1 and TOPEX/Poseidon SWT meeting
Phone: (301) 614-6112 ’ distribution and assistance with supporting Jason-1 data. We also ack ledge the NASA physical oceanography program and the Arles, France, Nov. 17"-21% , 2003

email: Scott.B.Luthcke@nasa.gov TOPEX/Poseidon project for their support.



