1. Introduction
Two high eddy kinetic energy (EKE) bands with well-defined annual cycles in the South Pacific are revealed in the decade-long satellite altimeter data. One is along the South Equatorial Countercurrent (SECC) centered at 9°S, and another is along the South Tropical Countercurrent (STCC) in 21°–20°S. Although the STCC is less well recognized (lower left panel, Tomczak and Godfrey 1994), its existence as a mean eastward current can be seen in the Levitus climatology (lower right panel). Although both the SECC and STCC flow eastward and override the broad westward-flowing South Equatorial Current (SEC), we show that the seasonal EKE modulations in the SECC and STCC are caused by different mechanisms.

2. Altimetric Observations
Among the four high eddy variability bands in the South Pacific, the EKE signals have well-defined annual cycles in the SECC and STCC bands. While the EKE in the SECC peaks in March/April, the EKE in the STCC has a maximum in November/December.

3. STCC: Baroclinic Instability
Following Qiu (1999), we consider the 2-layer QG model:
\[
\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{\partial \mathbf{f}}{\partial y} \times \mathbf{u} + \frac{1}{\rho_0} \frac{\partial p}{\partial x},
\]
where \(\mathbf{f}\) is the Coriolis parameter, \(\mathbf{u}\) is the zonal current, \(p\) is the pressure, and \(\rho_0\) is the density. The necessary condition for the baroclinic instability
\[
\nabla^2 \mathbf{u} = -\rho_0 \frac{\partial^2 \mathbf{u}}{\partial y^2} + \frac{1}{\rho_0} \frac{\partial p}{\partial x},
\]
is satisfied. In austral winter, the STCC/SEC system is baroclinically more unstable than in other seasons due to the large vertical shear and weak stratification. This seasonal variation in the intensity of baroclinic instability is responsible for the seasonal modulation of the STCC’s EKE field with a November/December maximum and a June/July minimum (lower right panel contrasting the growth rates in the two seasons).

4. SECC: Barotropic Instability
The large deformation radius in the low-latitude SECC region prevents the vertically-sheared SECC-SEC system from becoming baroclinically unstable. Here, we adopt the 1-layer reduced-gravity model:
\[
\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\mathbf{f} \times \mathbf{u} + \frac{1}{\rho_0} \frac{\partial p}{\partial x},
\]
where \(\mathbf{n}\) is the normal to the isopycnals. The necessary condition for the barotropic instability is the change in sign in \(\mathbf{n}\). Since
\[
\nabla^2 \mathbf{u} = -\rho_0 \frac{\partial^2 \mathbf{u}}{\partial y^2} + \frac{1}{\rho_0} \frac{\partial p}{\partial x},
\]
we find the presence of the background westward flow (i.e., the SEC) can significantly lower the threshold for barotropic instability (see Philander 1976). The seasonal EKE signal along the SECC results from the barotropic instability which modulates seasonally due to the strength of the horizontal shear in the SEC-SEC system (lower right panel; solid line). Analysis of the barotropic conversion rate (BCR):
\[
BCR = \mathbf{u} \cdot \nabla \mathbf{u} + \frac{1}{\rho_0} \frac{\partial p}{\partial x},
\]
inferred from the altimetric data (lower right panel) supports this notion.

5. Conclusions
A. Seasonal EKE modulation in the STCC is due to the seasonal variation of the intensity of the baroclinic instability of the vertically-sheared STCC-SEC system. In austral winter, the STCC/SEC system is baroclinically more unstable than in other seasons due to the large vertical shear and weak stratification.
B. Seasonal EKE modulation in the SECC is due to the seasonal variation of the intensity of the barotropic instability of the horizontally-sheared SECC-SEC system. Energetics analysis shows that the energy transfer from the mean to the EKE peaks approximately one month before the EKE reaches maximum.
C. Despite being a weak, surface-trapped eastward current in the center of the wind-driven subtropical gyre, the STCC provides a strong EKE source.

References and Acknowledgment
Philander, S. G. H., 1976. JGR, 81, 3725–3735.
The merged T/P and ERS-1/2 altimeter data are provided by the CLS Space Oceanography Division. Support from NASA thorough Contract 1207881 is gratefully acknowledged.