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Optimal filtering of mean dynamic topography 
models obtained using GRACE geoid models.
Per Knudsen,  O.B. Andersen, and T. B. Andersson

ABSTRACT
Least squares collocation is an estimation technique where 
discretely located observations of different kinds can be 
integrated. The technique allows a rigorous description of the 
full covariance associated with signal, the errors as well as the 
estimated quantities. In this presentation error covariances
associated with the gravity field and the ocean dynamic 
topography are analysed and described. The multi-disciplinary 
project "Geoid and Ocean Circulation in the North Atlantic 
(GOCINA)" aims at enhancing the capacity in Earth 
observation using data from the European Space Agency 
missions ENVISAT and GOCE. Two examples of the 
technique used on GOCINA data are presented One example 
where the standard GOCE gravity field models are used and 
one example where GOCE data are used directly in least 
squares collocation to obtain an optimal product. In this study 
the techniques are applied to enhance the estimation of the 
Mean Dynamic Topography using the high resolution Mean 
Sea Surface KMS04 and the geoid model GGM02S from 
GRACE. Especially, for modeling marine geodetic quantities 
with incomplete global coverage the methods have its 
advantages compared to a regular expansion into spherical 
harmonic functions. 

1   Background 

Least squares collocation has been used widely for gravity 
field determination (e.g. Moritz, 1980). The method has mainly 
been used in regional computations since the computational 
effort in inverting the equation system is quite big and depends
on the number of observations. However, the technique has it 
strengths because different discrete data types may be 
integrated and their full signal and error characteristics are 
taken rigorously into account. Tscherning (2004) has 
developed the technique further and applied it to GOCE data 
(both SST and SSG) and demonstrated its value.

In global analyses of the gravity field quantities are 
expanded into spherical harmonic functions. This is a well 
known and efficient method to condense and synthesize the 
information from a large set of observations. The technique 
has its drawbacks because it is difficult to model high 
resolution fields where higher degree and order functions are 
required. The number of equations depends on the number of 
coefficients which depend on the harmonic degree and order 
up to which the expansion is going. Hence, the computational 
effort in inverting the equation system becomes too big when a 
high resolution expansion is needed.

In analyses of the ocean tides and ocean mean 
dynamic topography the use of global expansions into 
spherical harmonic functions have demonstrated its 
disadvantages. The main problem occurs because the oceans 
only cover a subset of the sphere. Hereby, the nice properties 
of the spherical harmonic functions disappear. They are no 
longer orthogonal and even for low degree expansions the 
equation systems become singular.

The main focus in this study is to test the least 
squares collocation and its representation of the quantities 
using representers on the determination of the mean dynamic 
ocean topography.

2   Least Squares Collocation and Representers

The least squares and minimum norm estimation technique 
called least squares collocation is used in this study. That is a 
method where an estimate of a quantity such as the geoid is 
obtained using the following expression 

(1)
where C and D are covariance matrices associated with the 
signal and the errors of the observations y. x is the estimated 
quantity. The errors and error covariances were are using

(2)
where cxx/ is the a-priori (signal) covariance between x and x/
(see e.g. Moritz, 1980).

By splitting up Eq.(1) and defining the vector b as the 
representers expressed as

(3)
we obtain

(4)

where the estimated quantity x in a point P now has been 
expressed by a sum of a series of the coefficients, or 
representers bi, multiplied by the reproducing kernel K(P,Qi)
associating the estimate with the observations. The 
reproducing kernel is an expression for the covariance 
function.

Hence, the estimates are expressed as a linear 
combination of a set of base functions which in this case are 
associated with the observations and not with some set of 
functions such as spherical harmonic functions. However, the 
spherical harmonic functions are fully included in the modeling 
of the reproducing kernel, as it is described in the next section.

3 Geoid covariance modeling

Using spherical harmonic functions signal and error 
covariances associated with the gravity field between points P 
and Q may be expressed as a sum of Legendre’s polynomials 
multiplied by degree variances. That is

(5)

where  are degree variances associated with the anomalous 
gravity potential field and ψ is the spherical distance between 
P and Q. Expressions associated with geoid heights and 
gravity anomalies are obtained by applying the respective 
functionals on K(P,Q), e.g. CNN=LN(LN(K(P,Q))) (more on 
collocation by Sansò, 1986, Tscherning, 1986).
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4 Results

The least squares collocation and its representation of the 
quantities using representers is tested on the 
determination of the mean dynamic topography. This is 
done using a set of observations that has been derived 
using the mean sea surface KMS04 and a geoid
computed from the GMM02S coefficients up to harmonic 
degree and order 90. The differences forming a so-called 
residual mean sea surface, or an estimate of the dynamic 
topography, were averaged in cells of 2 by 2 degrees 
covering the global oceans (see Figure). This averaging 
eliminate most of the higher degree geoid signal without 
damaging the dynamic topography below harmonic 
degree 90 (see Figure 1).

Then the b-vector (eq. 3) was computed using 
proper covariance functions associated with the residual 
geoid and the mean dynamic topography both averaged 
in 2 by 2 degrees cells (see Figure).

Based on the representers in the b-vector and the 
same covariance functions the observations were 
reproduced in an estimation of the sum of the residual 
geoid and the topography averaged in 2 by 2 degree cells 
using eq. 4. The RMS values of the observations, the 
estimated values and the residuals were 0.91 m, 0.87 m, 
and 0.13 m respectively. The grid is shown in Figure. 
Note the dominating geoid signal at wavelengths of about 
4 degrees (roughly corresponding to harmonic degree 
90). Note also the underlying well known features of the 
topography. 

The using a proper cross covariance function the 
full mean dynamic topography was estimated using eq. 4 
(see Figure). Note how well the geoid residuals have 
been eliminated. The estimated topography has been 
optimally filtered and give full resolution in a compromise 
with smoothness within the signal to noise relations in a 
rigorous manner balancing the least squares and the least 
norm criteria.

5   Perspectives

The impact of the GOCE satellite mission on the recovery 
of the gravity field has previously been analysed for two 
simulated cases by Knudsen and Tscherning (2005). In 
the first case the GOCE Level 2 product is used where the 
gravity field is approximated by spherical harmonic 
coefficients up to degree and order 200. In the second 
case synthetic Level 1B GOCE data are used directly in a 
gravity field determination using least squares collocation. 
In case two the full spectrum geoid error was improved 
from 31 cm to 15 cm and the resolution was doubled. The 
results are important for the future users of GOCE that 
need the extra accuracy.

The determination of the degree variances is essential to 
obtain reliable and useful signal and error covariance functions. For 
the gravity field it has been accepted that the degree variances
tend to zero somewhat faster than i-3 and that the Tscherning-
Rapp model (Tscherning & Rapp, 1974) may be used as a reliable 
model. When a spherical harmonic expansion of the gravity field up 
degree and order N has been used as a reference model and, 
hereby, been subtracted from the quantities, then the associated
error degree variances should enter the expression, eq. (5), up to 
harmonic degree N. That is

(6)

where A = 1544850 m4/s4, RB = R – 6.823 km were found in an 
adjustment so that agreement with empirical covariance values 
calculated from marine gravity data was obtained. The error degree 
variances, εi, are associated with the errors of the reference model 
from GRACE. The degree variances are shown in Figure 1. 
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4 Mean Dynamic Topography Covariance 
Modeling

To get reliable results of simulations and tests carried out using 
least squares methods it is important that both the signal and the 
error characteristics have been taken into account. In least 
squares collocation that means that the covariance function 
models should agree with empirically determined characteristics 
such as the variance and correlation length. In analysis of errors 
formally estimated using eq.(7), it is very important that those
quantities are reliable. That is also the case when MDT errors 
are analysed. Hence, a model describing the magnitude and the 
spectral characteristics of the MDT is needed.

A kernel function associated with the MDT, may be 
expressed in a similar manner as the gravity fields as

(7)
where the degree variance in this expression are associated 
with the MDT, naturally. 

The degree variance model was constructed using 3rd 
degree Butterworth filters combined with an exponential factor 
(e.g. Knudsen, 1991). Hence, the spectrum of the MDT is 
assumed to have similar properties as the geoid spectrum; same 
type of smoothness and infinite. That is

(8)

where b, k1, k2, and s are determined so that the variance and 
the correlation length agree with empirically derived 
characteristics. This resulted in the model where b = 6.3 10-4 
m2, k1 = 1, k2 = 90, s = ((R-5000.0)2/R2)2. The variance and 
correlation length are (0.20 m)2 and 1.3° respectively. The 
variance and correlation length of the current components are 
(0.16 m/s)2 and 0.22° respectively.
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PS: Please note that this is a demo. The data 
coverage in the Gulf Stream area, Indonesia, 
Caribbean, and the Arctic should have been 
checked more carefully. No time for re-runs –
sorry.
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Sample of aposteori MDT error covariance functions

For the estimation and representation of the Mean 
Dynamic Topography the results from this study 
demonstrate that the collocation approach with its 
representers perform very well. Since only about half of 
the sphere is covered the number of averaged 
observations corresponds to the number of harmonic 
coefficients that provide the same resolution. Hence, the 
computational efforts are similar. Furthermore, the full 
signal and error characteristics are taken into account. 
This result in an optimal filtering of the data where aliasing 
caused by be truncation is avoided.

Finally, the major advantage is that full spectrum 
error covariances associated with the estimated 
topography are rigorously obtained. This is of crucial 
importance for the assimilation of altimetry into ocean 
circulation models.
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