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Summary

We present a new method for waveform retracking, based on neural network. A set of synthetic Jason-1 waveforms was created according to the Hayne model, taking into account the 
thermal noise, the telemetry and the data compression used for telemetry, assuming a single gaussian PTR. An appropriate neural network (NN) was determined to retrieve the epoch 
(range), and the significant wave height from the waveform samples, given a fixed skewness. The obtained NN can be seen like a non-linear mathematical function giving the two 
parameters (Epoch, SWH) given the 64 waveforms samples: (Epoch, SWH)=F(s1,...,s64).
The NN was applied to simulated and SGDR (Scientific Geophysical Data Records) Jason-1 waveforms.
We show the following results:

The standard deviation of the NN epoch estimation is equivalent or slightly better than the one obtained with the MLE3 (Maximum Likelihood Estimate) algorithms of the SGDRs.
The standard deviation of the NN SWH estimates is reduced by a factor two in comparison with the MLE3 estimate.

Given the simplified modelling applied in this study, the NN estimate have non-negligible biases, but we demonstrate that this problem can be solved by optimising the NN, using a more 
sophisticated forward model (Hayne 2nd order) and by creating correction tables.

1. Simulated waveforms

1st order Hayne Model
Single gaussian PTR (0.513T)
Thermal noise [0,10], FFT(gaussian2)
Speckle noise (Gaussian, 1/sqrt(90))
Compression/decompression effects

2. Determination of a Neural Network for 
data inversion

Multilayers Perceptron
Input: Ku band Altimetric Waveform (gates)
Output:SWH (m) and Epoch (m)

Training process
Estimation of weights
Train database: SWH ∈ [0;11m] , Epoch ∈ [-0.47;0.47]

Optimisation and Validation of the Network Architecture over an independent database3. Performances with simulated data

15 test databases defined by CNES
Comparison of MLE / Neuronal Retracking
STD of 20Hz estimations:

 SWH Mispointing Angle Skew.Waveforms Skew.Rtk PTR 

Test 1 2 m 0° 0.1 0.1 Single Gaussian 

Test 2 2 m Linear between 0 to 0.3° 0.1 0.1 Single Gaussian 

Test 3 6 m Linear between 0 to 0.3° 0.1 0.1 Single Gaussian 

Test 4 Linear between 1 to 6m 0° 0.1 0.1 Single Gaussian 

Test 5 Linear between 1 to 6m 0.3° 0.1 0.1 Single Gaussian 

Test 6 Linear between 1 to 6m Linear between 0 to 0.3° 0.1 0.1 Single Gaussian 

Test 7 2 m 0° 0.1 0.1 Full PTR 

Test 8 2 m Linear between 0 to 0.3° 0.1 0.1 Full PTR 

Test 9 6 m Linear between 0 to 0.3° 0.1 0.1 Full PTR 

Test 10 Linear between 1 to 6m 0° 0.1 0.1 Full PTR 

Test 11 Linear between 1 to 6m 0.3° 0.1 0.1 Full PTR 

Test 12 Linear between 1 to 6m Linear between 0 to 0.3° 0.1 0.1 Full PTR 

Test 13 2 m 0° 0 0 Full PTR 

Test 14 2 m 0° 0 0.1 Full PTR 

Test 15 2 m 0° 0.1 0 Full PTR 
 

4. Performances with simulated data

Division by 2 of the standard deviation of the SWH estimates: 60cm 60cm ⇒⇒⇒⇒⇒⇒⇒⇒ 30cm30cm

Performances of the epoch estimation slightly better: 9cm 9cm ⇒⇒⇒⇒⇒⇒⇒⇒ 8cm8cm
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Conclusions and Perspectives

This short study demonstrated the ability of a method based on neural networks to 
reach:

At least comparable results with MLE, concerning the precision of the epoch
estimation (hence the precision of the range)

AA significant improvement of the precision on the Significant Wavesignificant improvement of the precision on the Significant Wave
Height, with a reduction of noise of a factor 2Height, with a reduction of noise of a factor 2

One potential advantage of the method is that it considers radar echoes individually 
(20 Hz for Jason-1), and doesn’t assume restricting hypotheses on the proprieties of the 
sea surface for tens or thousands of kilometers.

Applications

Improvement of a factor 2 of the SWH estimates:
Applications in meteorology like sea state forecast (use of altimeter SWH for 

assimilation, or validation, in wave models)
Sea-state bias correction for the altimeter products:

Sea-state bias studies (relying on the SHW and wind)
Improve the precision of the sea-state bias corrections (depending mainly on the 

SWH) 
Extreme events (hurricanes): can extremely high waves be better estimated with this 

method?

Scientific studies dedicated to faint geophysical signals may benefit from improvements 
of the altimeter data precision:

Small eddies (<< 100 km)
Geophysics (small wavelengths of the geoid)

Other perspectives

The computation efficiency of neural networks can be valuable for:
Computation of the OSDR (Operational scientific data records, Near-Real Time 

products) SWH for wave models
Massive re-processing of historical altimeter data: the approach presented here 

necessitates the determination of waveform invertors specific to each mission.
Inversion of other parameters:

Non free Ocean surface: Sea Ice and Ice Caps…

5. Correction tables

Estimation of the Neural network 
biases

Simulation of 10 000 noisy altimetric
waveforms / SWH

⇒⇒ The NN biases can be correctedThe NN biases can be corrected

6. Other results

Effect of the center gate (half point of the leading edge): 
The precision of the epoch depends on the waveform 
centering 

Taking into account the mispointing angle in the training 
database, without estimation
⇒ Diminution of the neural network biases
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Contact : M. Arnaud Quesney
arnaud.quesney@noveltis.fr

Survey

A survey about that subject is in circulation among SWH users. If you want to 
participate in that study, please contact M. Arnaud Quesney (coordinates in up-right 
corner).  


