

only the central part of the pass is an 95.8 % of the measu ments remain at this sten

IGS GPS antenna phase correction maps : Extension to low elevation for LEO satellites

ruction of integer cycle slips in L2-L1 ection on L2

sive half cycle slips obs n : > 0.1 cy, pass durati as at both ends of the p

Ξ

Maximal nadir angle of a GPS measurement α in GPS antenna frame is depending of the receiver altitude. (Nadir angle are counted from nadir direction)

Evolution of maximal nadir angle in GPS antenna frame with receiver altitud

4 steps strategy to compute extension of maps :

B.Schart Satellite Antenna PCV 100 BLOCK IFB BLOCKIRA BLOCKIRA and the - Chiefer angle (*) nte distrib 1. GPS phase residuals are plotted with respect to nadir angle (without the IGS GPS phase maps). Black dots correspond to IGS antenna maps. 2. & 3. Model is extended to follow the trend of IGS maps 4. Test of the extended map on a real Jason1 cycle. This shows a significant improvement for high nadir angle residuals 5. To be used for next GDR standard ?

- IGS Antex files give corrections (in mm) only for nadir angle from 0° to 14° which is enough for ground receivers

(17.8-

For LEO satellites and Jason like orbits. IGS map must be extrapolated to higher nadir angle

 The measurements distribution received on Jason1 tends to shows that a lot of The measurements distribution received on Jason tends to shows that a lot measurements are obtained at high nadir angle
 Orbits determination are computed using SP3 files from JPL that are already coherent with IGS maps....

Design of a phase correction map for Jason2

Orbits determination have been computed on the four first cycles of Jason2 with this configuration :

- JPL clk/sp3 constellation solution. Antex ICS_1480 extended maps used for GPS phase corrections
 Receiver antenna reference point : (2.365794 ; -0.217000 ; -0.521790)
 Receiver antenna inorfree phase center along antenna reference axis : (-0.000004 ; 0.000001 ; 0.036919)
 Floating ambguities are adjusted

- Jason2 Z-Ante Jason 2:-Antenna Bias is also adjusted so that GPS phase residuals represents only phase corrections (high frequencies) (assuming that X and Y coordinates are good)

Phase measurements residuals per cycle (CY001 to CY004), I-20mm to 20mm]

Phase measurements residuals per GPS block (Block II, IIR-A & IIR-B), I-20mm to 20mm]

1-20

Is there also a possible 0.5 cy bias on each L1 pass ? This is very important, because integer ambiguity fixing is no more possible in this case. When a pass has in the middle a 0.5 cycle slip, which half of the pass is correct ?

Conventions : Block IIR-B = IIR-M + 4 last IIR

Some results when Jason2 and IGS GPS maps are used together with 1.5cm Z antenna bias : - Differences between orbits computed with and without jason2 phase correction maps are about 1mm rms in radial

C C

- Laser residuals are slightly improved on some good stations (e.g Yarragadee L7090, Washington 7105, Herstmonceaux 7840, ...)

-SLRF stations coordinates solution used To be recomputed using LPOD2005

RMS	YARR_L7090			WASH_L7105			HERS_L7840		
cm)	No corrections	CDP adjusted	J2 Map + CDP	No corrections	CDP adjusted	J2 Map +CDP	No corrections	CDP adjusted	J2 Map +CDP
Y001	1,94	1,82	1,81	1,04	0,97	0,97	1,33	1,44	1,49
Y002	1,51	1,46	1,42	1,84	1,77	1,66	1,67	1,73	1,71
Y003	1,81	1,69	1,61	1,23	0,98	1,02	1,16	0,89	0,87
Y004	1,82	1,99	1,93	1,62	0,85	0,85	1,48	1,38	1,38

No GPS block dependant patterns are noticeable