A climatology of surface filaments
derived from altimetry
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Lagrangian methods like the Lyapunov exponent calculation allow to study the
effects of the mesoscale turbulence on the dispersion of a tracer. In particular,
by exploiting both the spatial and the temporal variability of the velocities, the
Lyapunov exponent has been shown to predict part of the surface submesoscale
dynamics, predicting the location of observed cross-streamline chlorophyll and
sea surface temperature filaments from altimetry data at subgrid resolution.
Here we show how the Lyapunov exponent can be potentially used to validate
altimetry products and to extract subgrid information on horizontal mixing.

THE LYAPUNOV EXPONENT

What does the local Lyapunov exponent measure?

The local Lyapunov exponent measures the local
dispersion of particles Initialised nearby. By
computing the exponent on a grid, one can
construct a map of local dispersion rates. These
maps typically show maxima of Lyapunov
exponent along lines, that can interpreted as
frontal regions.

The intensity of the Lyapunov exponent provides the inverse timescale at which a tracer
front Is developed.

Tracer submesoscale filaments from altimetry data =
e

One of the main advantage of the Lyapunov exponent is that it L
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depends on both the spatial and the temporal variability of the Day 0 =~ i
velocity field. This allows to recover part part of the submesoscale e{;:;/;//;;\\ f
variability of tracers like chlorophyll or sea surface temperature from T
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the mesoscale eddies of altimetry data. In this example, a chlorophyill
pattern is reconstructed by the advection with altimetry velocities of a
synthetic tracer on a high resolution grid. Maxima of Lyapunov

exponents (black lines) provides the fronts that bound the filament. P& 10 I

Tracer scales smaller than the scale of the velocity field appear, due SRR IR i e
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Chlorophyll pattern on 7 July 1999 (SeaWiFS, NE Atlantic spring blomm)

DETECTION OF FRONTS AT THE GLOBAL SCALE

Large-scale fronts
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Spatial+temporal variability Spatial variability only (frozen velocity field)
The re-analysis of global altimetry maps provides the distribution of both

climatological and mesoscale fronts induced by the circulation observed by
satellite.

Since tracer filaments depend on the temporal variability of the velocity field,
the process of filament formation can be isolated and quantified by comparing
a Lyapunov map with a map recalculated on a frozen velocity field. This can
be used to estimate mixing.

VALIDATION OF ALTIMETRY PRODUCTS

SSA vs SSH Topex/Poseidon only
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The comparison of fronts detected from altimetry with the Lyapunov technique
can be used to validate the spatial and temporal variability of altimetry data in
combination with high-resolution SST images. In the example above left
(Eastern Mediterranean, in collaboration with V. Taillandier, |. Taupier-Letage,
and L. Mortier) the addition of a mean dynamic topography appears in fact to
degrade the satellite observation along the coast.

Other applications may include the comparisons of monomissions Vvs.
multimission products (top right).
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HORIZONTAL MIXING
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