Real time sea level from satellite altimetry in coastal regions

Kristine S. Madsen and Jacob L. Høyer
Danish Meteorological Institute and University of Copenhagen
With contributions from John Wilkin
Agenda

• Challenges in operational coastal altimetry
• A statistical storm surge model for the North Sea – Baltic Sea area
• Data assimilation with ROMS on the American east coast
Challenges in operational coastal altimetry
A) Getting data close to the coast

Gridded products like the AVISO Ssalto/Duacs 1/3° sea level anomaly are most often made for the open ocean
- Corrections may not be valid in coastal areas
- Assumed temporal and spatial scales too long
and may be delayed (AVISO NRT 7 days delay)

Therefore: use along-track data
Challenges in operational coastal altimetry
A) Getting data close to the coast

Retracking?
The altimeter measurement has standard Brown-like waveform until 10 – 20 km from the coast

Corrections
Tides: a local tide model is often needed
Wet tropospheric correction: the radiometer measurement has larger footprint (50 km). Therefore use model correction or set up local post processing system. Ongoing research!
Challenges in operational coastal altimetry
A) Getting data close to the coast

Example: Jason-1 cycle 37
Challenges in operational coastal altimetry
A) Getting data close to the coast

Example: Jason-1 cycle 37 and T/P cycle 380
Challenges in operational coastal altimetry

B) The temporal resolution

The *time scales* in coastal systems are often much shorter than the 10 day repeat cycle.

Suggested solutions:

• Linking tide gauge data and altimetry through a statistical model based on variational regression analysis.

• Assimilating altimetry into a 3D ocean model.
Statistical model

Data used

- RADS database – along track data
- Topex/Poseidon and Jason-1 tandem mission
- ECMWF model wet tropospheric correction
- Inverse barometer effects included (no corrections)
- No global tide model corrections applied – empirical harmonic correction in North Sea
- Also: 39 tide gauges from UK, Sweden, Norway and Denmark
- Common reference system for all data – regional geoid
Statistical model

Method

- Multivariate regression where data from 14 tide gauge stations are regressed onto the satellite altimetry observations
- Tide gauges selected based on the correlation with satellite observations
- Allows real-time sea level estimation in points where satellite data are available
- Assumes stationarity
Test case

Storm surge, November 1 2006
- 100 year event in the Danish Straits
- Caused by an unusual wind pattern with northerly winds both in Kattegat and the Baltic Sea, the resulting high waters meeting in the Danish Straits.
- Forecasted by 3D model DMI-BSHcmod (figure)
Test case – comparison of 3D model and statistical model

November 1 2006, 00:00
Test case – comparison of 3D model and statistical model
November 1 2006, 15:00
Test case – comparison of 3D model and statistical model

November 1 2006, 20:00
Test case – comparison of 3D model and statistical model

November 2 2006, 09:00
Test case – comparison of 3D model and statistical model

The statistical model performs better than our 2D storm surge model and similar to our 3D model

Ref: Madsen et. al., GRL, 2007
We will set up this model for operational use, using:

• Real time tide gauge data
• Time varying statistics based on weekly or monthly Jason-2 OGDR and IGDR observations
• If available, also data from Jason-1 in tandem mission
Mid-Atlantic Bight ROMS model for data assimilation

5 km resolution for IS4DVAR

1 km downscale forecast

- 3-hour forecast meteorology
- NCEP/NAM
- daily river flow (USGS)
- boundary tides (TPX0.7)
- nested in ROMS MAB-GoM (which is nested in Global-HyCOM*)
 - nudging in a 30 km boundary zone
 - radiation barotropic mode

34N, 75W

42N, 71W
Use along-track altimetry:
- 4DVar uses the data at time of satellite pass
- model “grids” along-track data by simultaneously matching observations and dynamical and kinematic constraints
Summary - 1

• We can obtain high quality SSH satellite observations in the coastal seas.
• The use of a model wet tropospheric correction is important for data return in coastal regions. Still data loss close to the coast (~10-20 km).
• Gridded AVISO product is not appropriate because of length/time scales of variability and need for specialized corrections.
Summary - 2

- Combination of satellite and tide gauge observations through a statistical model performs well for real time estimation of sea level in the Danish Straits, even in extreme cases.
- An operational version will be set up at DMI to complement our storm surge models. Jason-2 data will hopefully give better data return closer to the coast.

- Assimilation of along-track SSH successful but requires consideration of …
 - tidal signal in data-model
 - time filtering IS4DVAR increment to reduce inertial oscillations
 - forcing time correlation of SLA obs to suppress gravity wave in adjoint solution

… so still work to do before becoming operational.
Thank you!