Jason-1/2 cross-calibration with Envisat

A. Ollivier, Y. Faugère - CLS N. Picot - CNES, P. Femenias - ESA

Introduction

- Since Envisat was launched, Cross Calibration studies with the Jason-1 mission are performed to assess the data quality and performances of both missions.
- A precise altimetric mission as Envisat can help to understand the observed differences between Jason-1 and Jason-2 by giving a third reference
- This presentation aims at showing the cross-calibration between Jason-2 and Envisat, enlightened by 6 years of cross calibration with Jason-1.

OSTST Nice 2008 - CALVAL Jason-1/2 Cross calibration with Envisat

esa

cnes

Overview

In this presentation, we will focus on :

- Short overview Envisat / Jason-1 GDR : How close are they today?
 Comparisons using GDR products on the whole period
- 2. <u>Envisat / Jason-2</u> : *Envisat, a useful third point of comparison between the Jasons*
 - ➔ Comparisons using IGDR products on the 110 days of Jason-2 life time
 - Engaging results concerning comparisons using GDR products on the 60 days of data
- 3. Envisat / Jason-2 / Jason-1 : A specific comparison analysis
 - High frequency content comparison.

esa

Cones

1. Envisat / Jason-1 GDR : *How close are they today?*

Cres esa

- 4 -

Envisat GDR status

Jason-1 / Envisat consistency

• Good consistency between the two missions.

Envisat –Jason-1 dual cross-overs on cycles 10 to 61 with a homogenised dataset

→ Consistency in terms of geographically correlated biases

esa

Cones

 Consistency in terms of MSL on mid-2005/2007

5/03/2007 5/03/2007 15/05/2007

4/07/2006

4/10/2006

94/12/200

•More details in Poster "Envisat /Jason-1 Cross-Calibration" (Faugère et al.)

OSTST Nice 2008 - CALVAL Jason-1/2 Cross calibration with Envisat

4/11/2007

4/10/200

4/03/2008

4/01/200

Mean Sea Level trend from cycle 41

2. Envisat / Jason-2 IGDR : Envisat, a useful third point of comparison between Jason-1 and -2

Cres Cesa

- 7

Data used for Jason-2 / Envisat comparison

- Results are shown here for IGDR data using MOE orbit on a 110-days period corresponding to :
 - Envisat cycles 70 to 73
 - Jason-2 cycles 1 to 11
 - Jason-1 cycles 238 to 249
- Preliminary results are then shown for GDR data using POE orbit on a 60-days period corresponding to :
 - Envisat cycles 70 to 71
 - Jason-2 cycles 2 to 7

esa

Ccnes

- Jason-1 cycles 239 to 244
- Statistics are computed on a J2 cyclic basis (10 days)
- For a better consistency, all SLA/SSH used here are computed with:
 - ECMWF troposphere correction and
 - GIM lonosphere correction, in order to be consistent with Envisat data

Differences of along track SLA

EN- J1 SLA using MOE

esa

cnes

EN- J2 SLA using MOE

- Differences of averaged IGDR SLA averaged per boxe on the whole period show:
 - East/ West bias seen on J1/J2 and EN/J1 comparison is no more visible on EN/J2 comparison.

Differences at dual crossovers using MOE

- Averaged SSH crossover difference on the whole period show:
 >East/ West bias seen on J1/J2 and EN/J1 comparison is no more visible on EN/J2 comparison.
 - →J2 is much closer to Envisat than J1
 - Balanced by the fact that the differences are small. Standard deviation at dual crossovers = 4.5 cm : enables a precise detection of potential anomalies

Monitoring of the standard deviation at crossovers

- Standard deviation of monomission SSH crossover difference cycle per cycle show:
 - slightly better performances for Jason-2 (4.4cm), Jason-1 (4.7cm) and Envisat (5cm).
 - ➔ Good consistency for the three missions

esa

Cnes

Envisat higher standard deviation is due to a different sampling (reference = J2 cycle \rightarrow Envisat cycles are not complete).

An average per boxes is performed, prior to the statistics in order to allow us to have homogeneous sampling of the ocean for the 3 satellites.

Engaging preliminary results using POE

- Averaged SSH crossover difference on the whole period show:
 - No more East/ West bias seen on Jason-1 related comparison (see M. Ablain presentation)
 - →Jason-2 and Jason-1 are very similar seen from Envisat
 - Standard deviation at dual crossovers = 3.4cm (< 4.5 cm with MOE) : enables an even more precise detection of potential anomalies than in NRT (IGDR)</p>
- Standard deviation of monomission SSH crossover difference cycle per cycle show for GDR (with POE):

→As for NRT (IGDR): good consistency for the three missions slightly better performances for Jason- 1 and -2 (4.2cm) and Envisat (5cm). The best improvement between IGDR and GDR is noticed for J1.

Engaging results consistent and slighly better than NRT

esa

cnes

3. Envisat / Jason-2 / Jason-1 comparison : *High frequency content*

OSTST Nice 2008 - CALVAL Jason-1/2 Cross calibration with Envisat

- 13 -

High frequency content

- Spectral analysis are performed (Mean spectrogram) on SSH along tracks with an ocean editing criteria
 - On 10 days cut into 160 seconds samples for 1Hz data
 - On 1 day cut into 15 seconds samples for _ 20Hz data

→ 1Hz data high frequency content show a complete agreement for the three missions, independently from the tracker used on Jason-2

esa

Cnes

20Hz High frequency content

- Envisat and Jason-1 and -2 spectral content have a similar shape, with a first slope, a small bump around 20-70km and a noise plateau at :
 - 9.2cm white noise for Envisat

esa

Cnes

- 7.9cm white noise for Jason-1 and Jason-2
- High frequency content for Jason-1 and Jason-2 are very consistent, exept that Jason-2 presents an unexplained coloration for frequencies above 3Hz.

→ Slight coloration under investigations :

- Unchanged by selections on data (distance to coast, 20 valid data per second, selection on mispointing, waves or MQE criteria...)
- Present for any tracker (remains for the SGT mode, although it is the same as Jason-1)

Conclusion

Envisat /Jason-2 are very consistent

esa

cnes

standard deviation of cross-over differences = 4,5 cm (IGDR) and 3.4 cm (GDR), which enables a
precise cross calibration

• Envisat is a useful third point of comparison between the Jason-1 and -2

- The geographically correlated biases between Envisat and Jason-2 are lower than with Jason-1.
- High frequency content for Envisat Jason-1 and Jason-2 are very consistent at 1Hz and 20Hz, independently from the tracker used on Jason-2.
- Concerning the 20Hz content, the comparison with other missions enables to notice a light coloration of the noise above 3Hz.

Jason-1 and -2 comparisons with Envisat GDR are very consistent

 This is encouraging for insuring a good continuity on the long term monitoring already initiated with Jason-1 since 2002.

 This cross calibration shows that precise analysis can be performed even if the satellites are not on the same tracks

