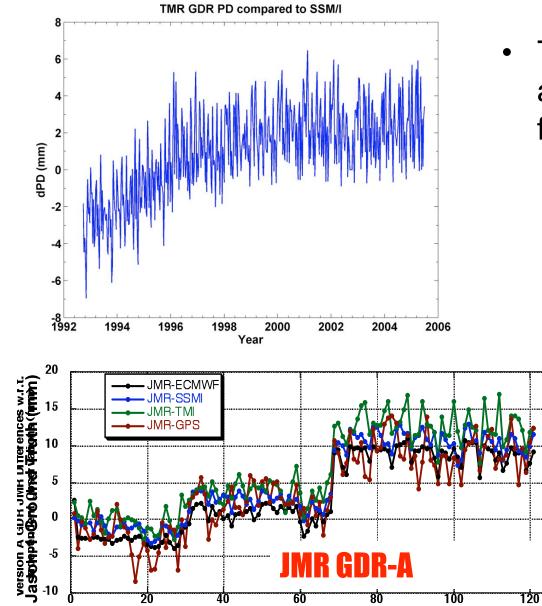


On the Long Term Stability of the Radiometer Wet Tropospheric Path Delay Retrieval: Past, Present and a Proposal for the Future on Jason-3

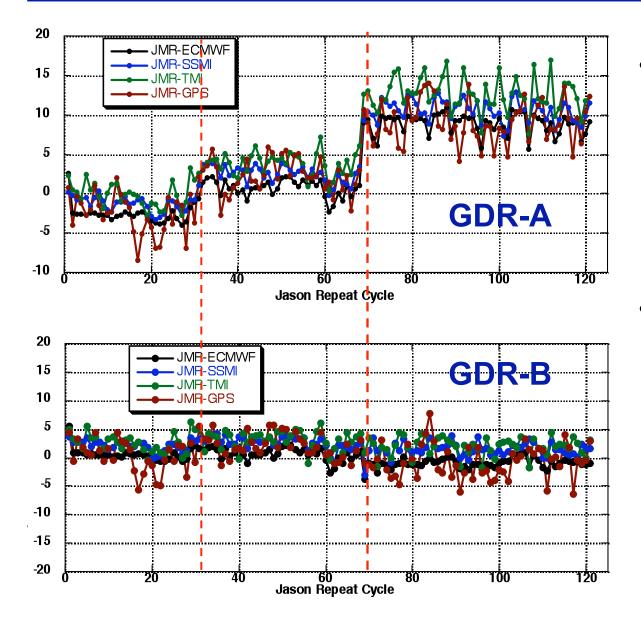
Shannon Brown and Shailen Desai Jet Propulsion Laboratory, California Institute of Technology Shannon.T.Brown@jpl.nasa.gov



- mm-level long term stability is a demanding requirement for the radiometer
 - < 0.1 K brightness temperature stability</p>
- Radiometers on Topex, Jason-1 and Jason-2 rely on periodic postlaunch re-calibration to maintain long term stability
 - Radiometers use internal calibration technique, susceptible to change on-orbit
- On-orbit calibration techniques matured during Topex/Jason-1 era
 - Radiometer calibrated to on-Earth brightness temperatures references
 - Path delays validated against models and other sensors
- Periodic re-calibration performed off-line using multi-year data record
 - Calibration updated on official products infrequently, during GDR reprocessing cycles
 - Replacement products made available

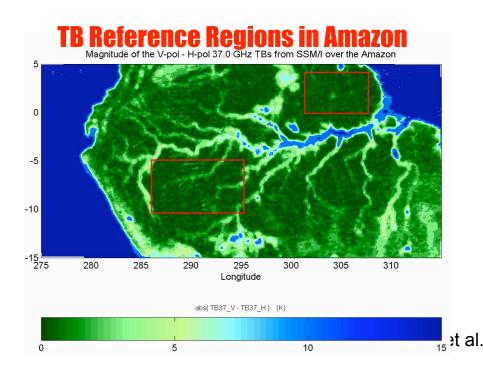
108

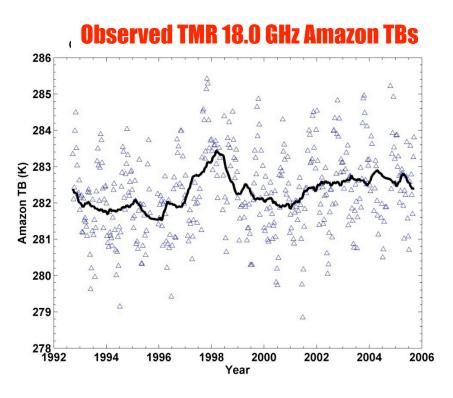
Jason Repeat Cycle


 TMR drifted at a rate of about 1 mm/year over the first 6 years of the mission

> Observed instability significant compared to sea level rise signal

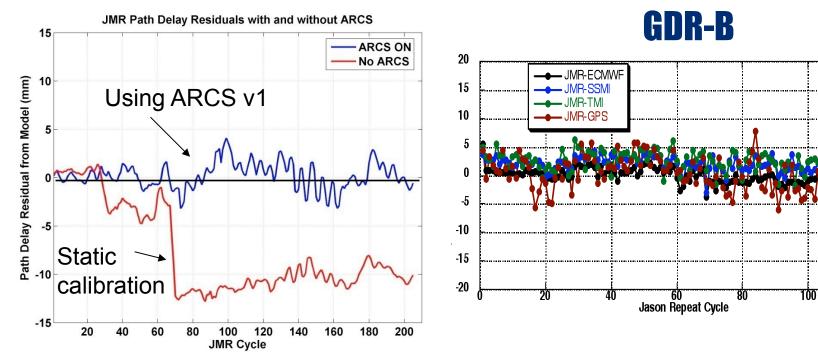
- JMR exhibited two jumps of about 5 mm then an additional 8 mm
 - 6mm/year when treated
 as drift





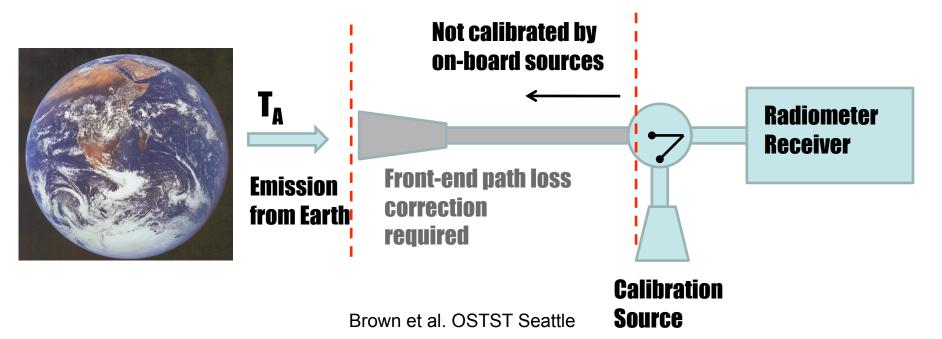
- JMR tuned to on-Earth brightness temperature references for GDR-B
- Eliminates large jumps in PD record

- On-orbit references sensitive to climate variability; require corrections; risk of aliasing geophysical signals
- Need to acquire sufficient data to reach mm-level
 - 30+ days of data required to reach 2-4 mm level
- Validation of recalibrated product at mm/yr level against other models/sensors challenging
 - Uncertainty near <u>+</u> 1mm/yr level


- Significantly improved radiometer design for OSTM
 - Significant advances made with radiometer on OSTM to improve long term stability and to minimize need for on-orbit re-calibration
- To ensure long term calibration for data on GDR, operational on-orbit calibration system developed for OSTM AMR
- <u>A</u>utonomous <u>R</u>adiometer <u>C</u>alibration <u>System</u> (ARCS)
- Runs in ground processing system at JPL
- Used to operationally monitor calibration and detect and correct changes prior to GDR production
- Provides best operational calibration prior to GDR release
- Fine tuning of calibration using several years of data may still be required for climate data record
- Note: same limitations of on-orbit calibration apply, ARCS only improves timeliness
- ARCS automates on-orbit calibration techniques developed over past 15+ years with TMR and JMR
- Uses current GDR processing cycle + 2 future cycles (30 day latency)
- Only uses TBs to recalibrate, PD comparisons used for detection and validation only

120

- ARCS v1 tested on 6 years of JMR data
 - Recalibrated a total of 26 times out of 206 cycles tested
- Significant improvement observed with ARCS turned on (blue line)
 - Long term drift eliminated with ARCS



Path Delay Residuals from Model

- Radiometers on Topex, Jason-1 and Jason-2 all use internal calibration approach
- This design is not optimal for climate applications
 - Advantage: No moving parts
 - Disadvantage: Do not view calibration sources through same path as Earth scene
 - Vulnerable to calibration instability from hardware changes requiring periodic post-launch re-calibration

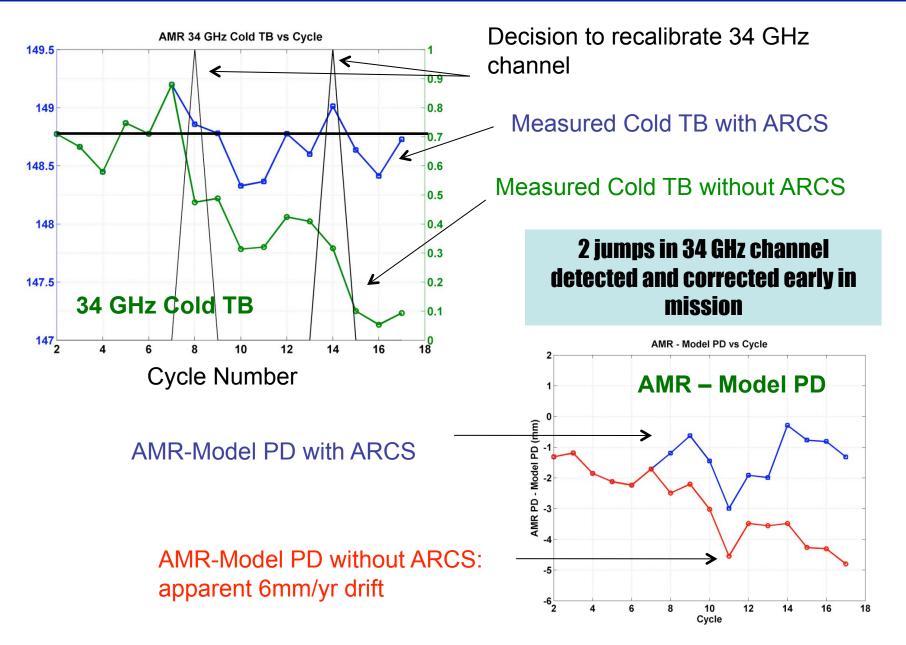
	Chan. GHz	Techno	Observations on TBs	Correction
ERS1/MWR 1991->1996	23.8 36.5	Dicke / Sky horn	None ?	None
TOPEX/TMR 1992->2005	18 21 37	Dicke / Sky horn	 Drift (mainly 18 GHz) ≅ 0.2K/ year between 1992 and 1996 then stabilization Yaw maneuvers 	Corrected (Ruf 2002, Scharro 2004) Corrected
ERS2/MWR 1995->2003	23.8 36.5	Dicke / Sky horn	 Gain drop at 23.8 GHz in June 1996 Regular drift of 0.2K/year 23.8 GHz 	 Corrected (Eymard et al, 1996) Corrected (Eymard et al, 2005, Scharroo 2004)
Jason1/JMR 2001->	18.7 23.8 34.0	Noise diode	JumpsDriftsYaw maneuvers	• Corrected (Brown et al., 2006)
Envisat/MWR 2002->	23.8 36.5	Dicke / Sky horn	 Strong gain drift at 36.5 GHz low impact on the TBs 	• Corrected (Picard et al, 2009)
Jason2/AMR 2008->	18.7 23.8 34.0	Noise diode (new reflector, better thermal control)	• 2 jumps in 34 GHz channel	• Corrected (ARCS) in GDR
From E. Obligis				

- Proposal for Jason-3: Eliminate reliance on periodic on-orbit recalibration by supplementing internal calibration system with external calibration system
 - On-board blackbody calibration targets can be added to existing radiometer design
 - Periodic observations of on-board external calibration targets used to maintain the long term stability (e.g. once per pass or cycle over land)
- Calibration is traceable to known physical quantities that are independent of the climate system and other sensors or models
- External calibration approach is well established and used scanning Earth observing radiometers
 - MSU, AMSU, SSM/I, TMI on TRMM, WindSat, AMSR-E, SSMIS
- Combination internal/external calibration approach has the potential to produce a long term calibration stability that exceeds that of each system individually
 - Not unreasonable to expect sub-mm/year inherent stability from such as system
 - 0.01 K long term TB stability estimated for MSU (Spencer et al., 1990): ~0.1mm/yr

- Planning for Jason-3 radiometer started at JPL
 - Current planning assumes instrument is a copy of the AMR
- To improve radiometer long term stability for Jason-3, action is needed from OSTST
 - Modify radiometer path delay stability requirement based on strong science rationale

AND/OR:

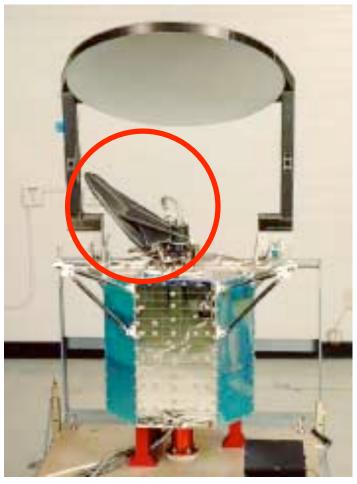
 Recommend Jason-3 project investigate solutions that improve the long term stability of the path delay measurements and eliminate the need for on-orbit recalibration.



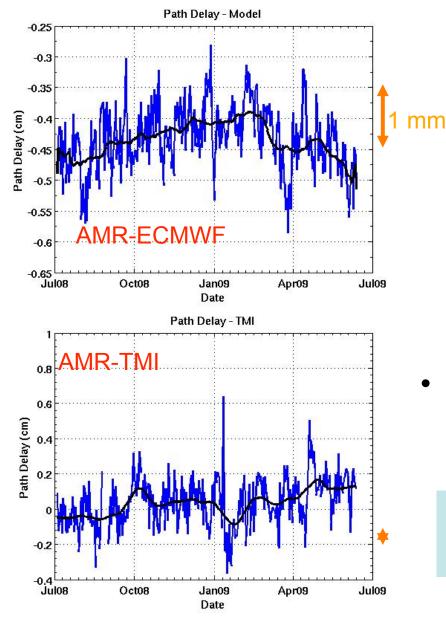
Backup

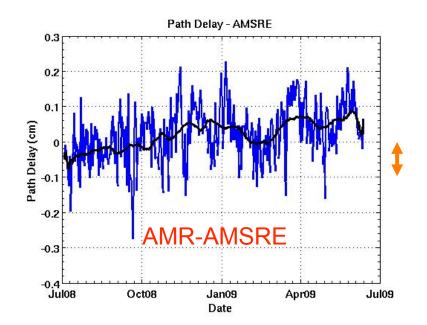
Brown et al. OSTST Seattle

OSTM ARCS Performance Assessment_IPL



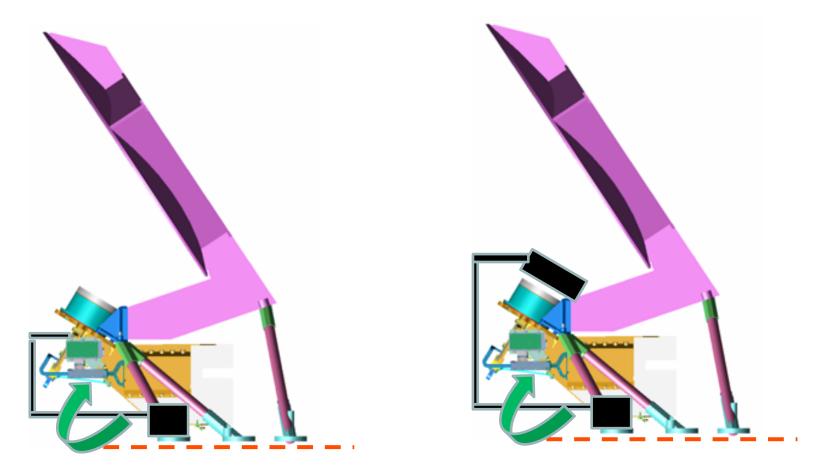
Examples of External Microwave Calibration Targets


Cold Sky Reflector



AMR PD Stability Assessment

 Comparisons between AMR and model and other radiometers


No conclusive evidence of long term PD instability or drift

Calibration System Concept

- Rotating calibration assembly places target in front of feed horn on command
- Fail safe mechanism to ensure target can not get stuck in front of feed

Brown et al. OSTST Seattle