

CENTRE NATIONAL D'ÉTUDES SPATIALES

POSEIDON3 DEM/Diode Coupling Mode

OSTST meeting – Seattle

June 2009

Jean-Damien DESJONQUERES (CNES)

Contents

Basics

Comparison with Autonomous Mode

DEM Generation

- Data
- Complementary Database
- Data Processing
- Zones Selection
- Update Strategy
- Preliminary Results
- Conclusion

Basics 1

To obtain in the TM an echo, the altimeter must synchronize the reception of the echo with the emission of a replica of the signal with a precision of a few nanoseconds.

Tracking Loop

- Closed Loop (= autonomous mode): onboard analysis of the echo to predict the instant of reception for the next echo.
 - Very good performances over oceans
 - Sensitive to the shape of the echo
 - Need a search phase (no Data during this phase)
- Open Loop: external information to give to the instrument the position of the echo
 - Theoretically, if this information is correct, the altimeter always provides surface data Corollary: if this information is out of the needed precision range, the altimeter would never provide useful data.

-> Need of accuracy for the echo position information

Basics 2

Diode provides the position of the satellite on the orbit

The surface height is given by the pseudo DEM (DEM=MNT) stored in POS3

This pseudo DEM is not a model of the real surface height but a model of the surface height "as seen by the altimeter"

It includes the ionospheric and tropospheric delays. The DEM is optimized to track water.

Comparison with Autonomous Mode

Median Tracker

Diode/DEM Mode

Tracks echoes over most surfaces

No priority

 Land surface tracking instead of water surface

Sensitive to echo shape

- Loss of tracking
- Search Phase is needed
 - 0.5s

- If a point is not included or false in the DEM, the echo can not be received in TM
- Water Surface can be prioritized even over land surfaces
- Altimeter always in tracking mode (+ for coastal area and small Inland Water) OSTMOJASON-2

¢ cnes

Comparison with Autonomous Mode

Diode/DEM

Médian

Coastal Zone Illustration

DEM Generation

Quality of the DEM -> direct impact on the data availability

- ■2 types of data
 - Surface type
 - Surface Height
- Data Processing

Zone selection / Hardware limitation

Update strategies

Data 1/2

■ Surface Type: -> GMT

- Give the surface type (Ocean / Lake / Land...)
- Modified to include 8 missing Lakes

Data 2/2

CNES/ CLS Mean Sea Surface -> Ocean

Bamber DEM -> Ice (Artic)

■ RAMP DEM -> Ice (Antartic)

■ Legos Data Base -> Lakes & River

JASON2 Data from Median -> Lakes (Upgrade: generation of a complementary Data Base)

Ace1 -> Land (+ inland water if not in others DB)

Complementary Database

Legos DataBase

- Very Good Accuracy (checked by Legos Team)
- Limited size

Generation of a Lakes Database with JASON2 Data

- Automatic generation (Detection of connexed water points and use POSEIDON Range Median Tracker Data)
- Objective: DEM Mode as good or better than the Median Mode for lakes

¢ cnes

Complementary Database

Modified Points (courtesy Noveltis)

Data Processing

Merging of Height Data

- Replacement of the height altitude depending of the data type
 - For Lakes
 - If included in Legos Data Base -> BD Height
 - Else If included in complementary Data Base -> Use Jason2 Height
 - Else Use Ace1 Height

Sampling of the DEM along the orbite

- Water surface extension
- Priorities
 - Ocean
 - Ice
 - Lake + River
 - Optimization (extension of water segment)
 - Land

Zones Selection

Hardware Limitation -> not possible to have a complete DEM

- Priority for the operational mission -> Water Surfaces Measurement
 - Water Surfaces: Every Water Point from GMT is coded (Ocean + Inland Water)
- Depending of the remaining place, The maximum of land surfaces is coded

Current Land Selection

Update Strategy

Full Upload

- For major changes, change of land selection....
- Takes long times (~ 3h45 over ground station visibility area, 3 days of operation)

Partial Upload

- To upgrade River & Lakes Height (Seasonal Variations)
- Shorter Time. Depending of Number of Modified Lakes

Preliminary Results 1/2

Difference between Median and DEM Tracker Range (courtesy CLS)

Ocean Histogram Lakes + Ponds Histogram

Preliminary Results 2/2

Results for Lakes and Rivers

Conclusion

- DEM Limitation concerns mainly Land Surfaces
- A new DEM has been uploaded to optimize the data availability on Inland Water and the altimeter has been configured in Diode/DEM Mode during the cycle 34
- Evaluation of the New DEM is in progress
 - Comparison between Applied and Computed Range Command
 - Processing of the Cycle 34 (Diode/DEM Mode)
- This Mode will be implemented on others missions (SARAL,S3,Jason3...)
- The use of alternative data (Type Surface Data + DEM Data) is studying.
- Decisions
 - Choice of the operational mode
 - The Land Selection can be discussed (but hardware limitation still exists!)

Back Up SLIDES

Data Processing

Compression

- Points are gathered in segments
- Absolute coding: 1 altitude for a segment
 - Water surfaces + no interest Area
- Incremental coding: first altitude + Altitude increment between consecutives points
 - Ice, Land + optimization

¢ cnes

POSEIDON3 Modes

Diode/MNT coupling Mode

- This mode is the much more innovative mode.
- There is no more acquisition phase
- The tracking loop is an open loop using a pseudo Digital Elevation Model
 - ->NOT SENSITIVE TO THE ECHO SHAPE AND LAND BACKSCATTER CONTAMINATION

