Sea level error budget session Introduction/Overview

From a global system error budget to application-specific error budgets

OSTST Meeting - Seattle - June 2009

What we have

- Classical performance assessment
- Noise, media, orbit errors + Absolute error (bias), and Stability (drift)
- The classical error budget is system oriented
 - Purpose : "within specifications ?"
 - Does not include errors from
 external corrections or references
 - A mix of very different error types : e.g high frequency noise vs large scale orbit errors

Altiv	H 1/3 = 2 m	H 1/3 = 4 m	H 1/3 = 6 m	H 1/3 = 8 m
OGDR (combined Ku + C)	2.5	3.8	4.6	5.4
IGDR and GDR (Ku Band) Requirement Before Ground Retracking	2	3.1	3.8	4.4
IGDR and GDR (Ku band) Requirement After Ground Retracking	1.7	2.4	2.8	3.3

(a) Combined Ku + C measurement
(b)Ku band after ground retracking
(c)Averaged over 1 sec
(d)Assuming 320 MHz C bandwidth
(e)Filtered over 100 Km
(f)Can also be expressed as 1% of H1/3
(g)After ground retracking
(h)Real time DORIS onboard ephemeris
(i)Which ever is greater
(j)On global mean sea level, after calibration

	OGDR	IGDR	GDR	GOALS	
	3 hours	1 to 1.5 days	40 days		
Altimeter noise	2.5(a)(c)(d)	1.7 (b)(c)(d)	1.7 (b)(c)(d)	1.5(b)(c)(d)	
Ionosphere	1(e)(d)	0.5(e)(d)	0.5(e)(d)	0.5(e)(d)	
Bias	3.5	2	2	1	
Dry troposphere	1	0.7	0.7	0.7	
Wet Troposphere	1.2	1.2	1.2	1	
Altimeter range	-	2		2.25	
RSS	5	3	3		
RMS Orbit				1	
(Radial component)	10 (h)	2.5	1.5		
Total RSS sea	11.2	30	34	25	
surface height	11.4	5.9	5.4	2.0	
Significant wave	10% or 0.5 m(i)	10% or 0.4 m(i)	10% or 0.4 m(i)	5% or 0.25 m (<i>i</i>)	
height	10 // 01 0.5 111 (1)	10 % 01 0.4 III (1)	10 % 01 0.4 III (1)		
Wind speed	1.6 m/s	1.5 m/s	1.5 m/s	1.5 m/s	
Sigma naught (absolute)	0.7 dB	0.7 dB	0.7 dB	0.5 dB	
System drift				1mm/year (j)	

Altimeter Noise as a function of Significant Wave Height

(1 sec average)

OSTM/JASON-2 ERROR BUDGET (in centimeters) (for 1 sec average, 2 meters SWH, 11 dB sigma naught)

OSTST Meeting - Seattle - June 2009

- 2

What users want to observe

- For each specific application domain, a dedicated global altimeter SYSTEM error
- how much does each error term alter the observation of each ocean process ?
 - Climatologists want to know MSL errors (global, local...)
 - Oceanographers need precise and complete error estimates as entry of ocean model assimilation
 - Not only static (estimated once), but dynamic error estimates (accounting for sensor evolutions, geophysical variations)
- Global sampling ability of one Jason is limited to 20 days and 300 km but can be improved if 3 a or 4 satellites are used
- Can be locally or regionally higher (along track, crossovers, high latitudes)
- Improving the space/time sampling extends the application domain but also modifies the error structure

_ 2

Typical error budget that users need

- Ideally, a user-oriented error budget should also include:
 - the error budget from external corrections: dynamic atmospheric correction, tidal model...
 - the error budget from reference fields: mean sea surface, mean dynamic topography, mean profiles (repeat track analysis)...
 - Because all components of the altimetry system contribute to the SSH error they use
- Absolute errors (as opposed to relative)
- Geographical distribution (map...)
- Temporal evolution : natural processes, algorithm change, aging degradation
- Space (d_x) and time (d_t) correlation scales of the error
- Possible correlations with ocean signals or with other errors

Orbit error decomposition

	1/P	Jason-1		
Source	(mm)	(mm)	Systematic	Rationale
Orbit determination 'noise'	13	8	1/rev, variable in phase and amplitude	Intercomparison of similar orbits
Static gravity field	1	1	1-2 mm 'order 1' pattern	GIF31a vs EIGEN-GL04C
Tide model	3	2	1-2 mm slowly varying 'order 1' pattern	CSR3.0 vs FES2004
Atmosphere/ocean/hydrology	3	2	1-2 mm varying 'order 1' pattern	GRACE RL04 atmosphere/ocean
Solar radiation pressure	4	2	few mm 120-day Z-variation	3% scale error, T/P more complex
Station/data errors *	3	2		ITRF2000 vs ITRF2005
GPS satellite orbits	0	2	uncertain	uncertain
Reference frame (origin)	2	2	few mm bias and 0.5-1 mm/yr drift in Z	geocenter time series estimates
Geocenter motion	2	2	2-6 mm annual variation in Z	geocenter time series estimates
RSS error	15	9		

• From John Ries (Hobart meeting)

OSTST Meeting - Seattle - June 2009

De-aliasing altimetric data of high frequency effects

color bar ± 20 cm²

High Frequency signals aliased by altimetry: lower frequency errors

 Sea level variance accounted for by the most recent recent corrections relative to simple IB

Ponte et al.

Temporal and geographical distribution

NN(TB18.7,TB23.8, TB34,γ800,SST)

Temporal and geographical distribution

- Some error terms increase significantly when :
 - Distance to shore decreases : radiometer wet tropo, MSS, waveform distorsion...
 - Bathymetry decreases : tides or DAC

Towards application-specific error budgets

- Different applications = different errors to be considered
 - MSL \rightarrow jumps and drifts at global or regional scale
 - Climate \rightarrow large scale errors, long period errors, overall stability
 - Mesoscale \rightarrow 50 to 500 km, 5 to 40 days
 - Local high resolution applications (e.g.: geodesy) \rightarrow noise, high-frequency error
- Wet tropo noise or coastal land contamination are maybe not a problem for climate...
- ...but side lobes, inversion algorithm errors and BT drifts are critical
- Global bias, USO drifts or large scale errors are not a problem for geodesy...
- ...but high-frequency error, noise minimization, special processing of degraded waveforms can be critical
- Other tricky subjects to consider:
 - Some errors are indirectly linked : Tides → Orbit → MSS → MDT
 - Some errors are correlated : retracked parameters are correlated, SSB can absorb orbit errors
 - Some algorithms reduce the error, but increase the correlation, or cause spectral leakage

Work plan?

- Given the maturity of science studies (climate, oceanography) and applications (operational oceanography), the altimeter error budget presentation should now be improved:
 - Of course the current **verification** of **system specifications** is still relevant
 - To address dedicated applications (space/time scales) in a user-oriented point of view: validation with respect to mission (user) requirements
 - To consider altimetry as a **System gathering several components** (orbit, altimeter, radiometer, media corrections, external corrections, reference surfaces)
 - To also consider the multi-mission perspective: altimetry will no more be only one standalone mission (hopefully)
 - Main drivers when designing a new mission
- This is a vast subject : decomposition into space/time domains leads to a large number of studies to be carried out in each domain of interest
- Error budget is a complex mix of science, technical recipies, external correction
- A collective effort is required. It could be structured through the OSTST membership:
 - Discussing the most relevant period/wavelength decomposition in each domain area (what users need?)
 - Each thematic group (splinter groups already structured within the OSTST) could contribute to a specific row in the global array
 - A recurrent error budget session could synthesize current status and new findings

OSTST Meeting - Seattle - June 2009

- 12 -

Natural variability of the J2 filters (3 filters per day – 10 days)

Temporal and geographical distribution

Gain in variance at crossover differences (with tide correction / without)

