

Status of other altimetry missions

J. Lambin, CNES with the help of many!

Altimetry consellation need

- One « high accuracy » reference mission
 - TOPEX, Jason series => to be continued by Jason-CS?
- One at least (ideally 3 for operational applications) complementing altimetry missions (GFO, ENVISAT...)
- Up to now, each mission considered, then decided and implemented independently
 - Error budget specified for one mission
 - Most users use data from several satellites intercalibrated through multi-mission products
 - OSTST has a key role in decisions that concern one satellite but impacts the whole altimetric system
 - Jason-1-Jason-2 formation flying phase
 - GFO extended mission up to end of 2008
 - Sentinel 3A -3B phasing?

Map of Absolute Dynamic Topography Animation : Jason-2 vs Tandem

What is a reference altimetry mission?

- TOPEX, Jason series
- => to be continued by Jason-CS?
- Payload required:
 - Dual-frequency altimeter => range + ionospheric delay + SWH + σ0
 - Microwave radiometer => tropospheric delay
 - Precise orbit determination suite (GPS, DORIS, laser) => altitude
- Orbit choice
 - Time/space sampling trade-off
 - Minimizing tide aliasing: non-sunsynchronous, mid-inclination
 - Suitable for POD
- Data latency (orbit quality dependent):
 - Near-Real Time (< 3 hr) availability of the L2 products: OGDR
 - Slow Time Critical (STC) (1 to 2 days) delivery of higher quality products for assimilation in models (e.g. SSH, SST): IGDR
 - Delayed time (~GDR), final product

Error budget main contributors

Other altimetry missions

The error budget required is slightly less constrained

- less demanding POD => intercalibration with ref. mission
- mesoscale oriented => longer cycles, better spatial coverage
- Sun-synchronous is OK
- Payload similar: altimeter radiometer – POD
- Same data latency and content
- Future generation / alternatives
 - Swath altimetry: SWOT
 - Constellations (Iridium-NEXT?)

¢ cnes

Upcoming altimetry missions

Currently in under development

- Cryosat2: ESA,
 HY2 A: CNSA (China)
- AltiKa/SARAL: CNES/ISRO
- Sentinel 3A & 3B: ESA

launch planned for Nov 2009 launch planned for Sept 2010 launch planned for Dec 2010 launch planned for end 2012

Currently planned, not completely approved yet

 Jason-3 	EUMETSAT/NOAA	launch target mid 2013
• GFO-2	NOAA	launch target 2013
+ SWOT	NASA/CNES	launch target > 2016

Longer-term plans

- HY2 B... CNSA
- Sentinel 3C... ESA
- Jason-CS series EUMETSAT/NOAA

launch target 2017

Cryosat-2

- ESA, November 2009
- Ice dedicated mission:
 - Objective: to determine fluctuations in the mass of the Earth's major land and marine ice fields
- Lifetime 3 years + 6 month comissioning
- Orbit => "geodetic type"
 - Altitude: 717 km, Inclination 92°
 - non sun-synchronous
 - Repeat cycle: 369 days (30 d sub-cycle)
- Spacecraft and Payload recurrent from lost CryoSat
- Instruments
 - SIRAL (SAR/Interferometric Radar Altimeter):
 - Low-Resolution / SAR / SARIn modes
 - KU-band (single frequency, no radiometer)
 - POD: DORIS and laser
- Ocean data: acquisition in LRM mode; integration to DUACS still under way

HY-2A mission description

- CNSA (Chinese National Space Agency) + CNES contribution
- Launch planned Sept 2010

Payload:

- Dual-frequency altimeter Ku/C
- nadir 3-frequency radiometer
- 5-frequency scanning radiometer
- Wind/wave scanning scatterometer
- DORIS/GPS/LRA

■ Orbit (sun-synchronous 6-18, 99.35°):

- First 2 years with a 14-day cycle
- Then one year with geodetic orbit (168-day cycle, 5-day approx. subcycle)
- Products availability?
 - Through DUACS multi-mission products (not confirmed yet)

geodetic orbit after 3 days

SARAL/AltiKa

CNES/ISRO end-2010

AltiKa/SARAL main objectives :

- Ocean mesoscale variability studies with an improvement of vertical and spatial resolution
- Data assimilation in a global ocean model
- Potential new applications on ice, land, coastal areas

Altimetric gap filler between ENVISAT & SENTINEL3

- Lifetime 3 years
- Same orbit, same ground track as ENVISAT

Payload:

- AltiKa: Ka-band altimeter (higher accuracy)
- + Dual-frequency radiometer (sharing the same antenna)
- POD based on DORIS/LASER

Data policy : ~ the same as JASON missions

- Fisrt India/France scientific workshop held on 22-24 april in Ahmedabad
- International Research Announcement planned in 2009

AltiKa performance

1 Hz RMS, SWH=2m	OGDR 3 Hours	IGDR 1.5 days	GDR 30 days	GOALS
Altimeter noise	1.5	1.5	1.5	1
lonosphere	0.6	0.3	0.3	0.3
EM Bias (% H1/3)	1.2%	1.2%	1.2%	0.5%
Dry troposphere	1.5	0.7	0.7	0.7
Wet Troposphere	1.2	1.2	1.2	1
Altimeter range RSS	4.5	3.5	3.5	2
RMS Orbit (radial)	Req : 30 Goal : 10	Req : 4 Goal : 2.5	Req : 3 Goal : 1.5	
Total RSS sea surface height		Req : 5.3	Req : 4.6	

- Better performance near the coastline
 - Reduced footprint (altimeter and radiometer)
 - Tracking modes (~ Jason-2)
- Higher precision in open ocean
 - Ka-band => reduced altimeter range noise
- Drawback: sensitivity to rain & cloud attenuation

Error budget specification

esa

ESA, (GMES program)

Mission Profile:

- 7-year lifetime (consumables for 12 years)
- SSO orbit (10h desc), 27-day repeat, 98.65°, alt 814.5 km
- Satellite Payload:
 - Ocean and Land Colour Instrument (OLCI)
 - Sea and Land Surface temperature (SLST)
 - Sentinel-3 Ku/C Radar Altimeter (SRAL)
 - Dual Frequency MicroWave Radiometer (MWR):
 - POD: GPS/DORIS/Laser

Launch

- + end-2012 for 3A,
- 30 months later for 3B
- Phasing 3A and 3B not optimal for altimetry

Sentinel-3 A and B

1 Repeat Cycle (27 days)

SRAL and MWR Overview

- Dual frequency Ku/C band Radar Altimeter
- End-to-end range accuracy: 3 cm (ocean)
- Observed surfaces
 - Open ocean, coastal ocean
 - Ice sheets (interiors and margins)
 - Sea ice
 - In-land water (rivers & lakes)
- High horizontal resolution (SAR mode)
- Open-loop tracking over rough surfaces

- Noise Injection Radiometer, with cold sky calibration
 - 2 channels: 23.8 & 36.5 GHz,
 - Footprints: 20 km, co-located with SRAL
- Wet tropo correction accuracy: 1.4 cm typ.

Error budget, measurement modes, data access

- Data from the Sentinel Missions will be provided, in principle
 - For any category use (i.e. not only 'GMES data use')
 - Free of charge (unless there are technical, legal and financial constraints)
 - To European users while for users in other countries bilateral agreements or data exchange agreements could be negotiated

Parameter	Range	Fast Delivery (<3hr)	Climate Goal (offline)
SSH	-	10 cm**	3.5 cm
Significant Wave Height	0.5 - 20 m	4% (= 8 cm @ 2 m)	1% (= 2 cm @ 2 m)
σ° Windspeed	-10 dB — +50 dB 0 — 20 m/s	±1.0 dB <i>rms</i> , 0.017 dB/s <i>stability</i> *** 2.0 m/s	±0.5 dB rms, 0.017 dB/s <i>stability</i> *** 1.5 m/s
Along track sampling	-	<10 km (open ocean) <300 m (over sea ice)	1 km (open ocean) <300 m (over sea ice)
Coverage	-	3-10 days (to be optimised with other Alt missions)	
Revisit time	-	2-3 days	

Surface type	Measurement mode	Tracking mode
Open ocean	LRM	Closed loop
Coastal zones	SAR	Open loop / Closed loop
Sea ice	SAR	Closed loop
Ice sheet interiors	LRM	Closed loop
Ice sheet margins	SAR	Open loop
Inland water	SAR	Open loop
Other	Depends on S/C resources	Depends on S/C resources

Jason-3

NOAA/EUMETSAT cooperation with CNES & NASA contributions

- Launch : mid-2013
- Mission design: OSTM/Jason-2 like
- Data => same as OSTM/Jason-2
- Pending approval (in December 2009)

2009 OSTST Meeting - Seattle - June 2009 - J. Lambin

... and Jason-CS ? « Continuity of Service »

- Target launch date: 2017
 - 1 year overlap with Jason-3
- new platform
- different orbit?

Surface Water & Ocean Topography (SWOT)

- NASA/CNES, launch possible in ~2016
- Mission combining research needs associated to hydrology and oceanography :
 - mapping of water level for rivers, lakes, and oceans (including coasts)
- Payload :
 - Wide-swath interferometric, Ka-band altimeter
 - nadir altimeter,
 - radiometer
 - GPS/DORIS/Laser
- Orbit: 22-day repeat cycle, 78° inclination, alt. 970 km
- CAL/VAL phase orbit: 3-day repeat cycle

Perspectives open by SWOT

SWOT will completely change the way we use altimetry:

- Time/space sampling requirements => how do we fill the holes?
- High resolution data within the swath => integration into large scale picture (data or model)?

2009 OSTST Meeting - Seattle - June 2009 - J. Lambin

Current status

Several new missions will be launched soon, but:

- Cryosat-2 => ocean data not secured yet, and quality will not match traditional missions (no C or S band, no radiometer)
- HY-2 => data availability is not secured yet

■ Things get better with SARAL, Sentinel-3

Then, two main uncertainties:

- Jason-3
- Sentinel 3B phasing

Current altimetry missions

Jason1: in extended mission, fully operational

- Moved to interleaved orbit with Jason-2 in Jan/ Feb 09, after 6-month « formation flying phase »
- Vulnerable to equipments failure risk
- Jason-2: lauched in June 2008,
 - OGDR distributed operationally since Dec 2008,
 - IGDR distributed operationally since Jan 2009
 - GDR will be released after OSTST (July 2009)
 - DUACS products already available
 - Very good product quality

ENVISAT

- excellent synergy with Jason1 (T/P and ERS) complementarity further improved)
- S-band missing: degraded guality by lack of ionospheric delay correction
- Will be put on a drifting orbit in 2010

Jason-1 vs Jason-2 SSH differences

Three altimeters in operations ?

- There is a rich panel of missions under development or planning => let us hope they will all succeed!
- Getting homogeneous information on error budget and/or specifications proved to be challenging
 - From one mission to another, but also from one error source to another
 - Maybe some effort should be put in promoting some standard metrics?

Space agencies (NASA, CNES) tend to put as priority innovative missions

- Transition to operational agencies of already mature concepts
- Promising in a long term perspective, but
- Potential issues in the continuity of the long-term record
- Multiple missions decided/developed by multiple agencies/countries
 - Coordination not guaranteed, higher programatics risk
 - Data availability on a case-by-case basis; whereas combined multi-mission product are the most effective
 - Efforts from CEOS (through NOAA and EUMETSAT) to improve altimetry mission coordination: « OST Constellation Mission Requiremnt Document » in preparation