POD Session Splinter Summary

F. Lemoine L. Cerri June 25, 2009

<u>What is the Jason-2 POD Performance?</u>

Jason-2: Comparison of different orbits to CNES POE

Good agreement between different solutions, close or better than 1 cm for all orbits

Jason-2 orbit evaluation

Jason2 orbit evaluation	doris		sir			xover ms (cm)	
cycles 1 -20	(edit cyc 18)		(edit cycles 18)			(edit cyc 18,20)	
	point s	ms	points	mean	ms	points	rms
		(mm/s)		(cm)	(cm)	-	(cm)
gsfc ld std0905	169900	0.3719	2764	-0.020	1.288	4814	5.512
gsfc ld srp0906	169900	0.3718	2764	-0.017	1.29 0	4814	5.505
gsfc ld red_std0905	169900	0.3711	2764	-0.075	1.242	4814	5.46 0
cnes ldg gdrc	167553	0.3719	2718	0.000	1.215	4812	5.523
cnes ldg gdrc tune00	167553	0.3718	2718	-0.019	1.209	4812	5.532
jpl gps rlse09a	162291	0.372 0	2662	0.015	1.307	4414	5.362

Crossover fits are independent

Jason-2: SLR residuals on different orbits

- Degraded RMS for non-GPS orbits when low elevation data is included
- Similar performance of SLR statistics for reduced dynamic orbits (JPL GPS, GSFC DL)
- SLR is included in GDR-POE solution
- CNES dynamic Doris and GPS orbits exhibit similar radial performance

RMS of common SLR residuals on core network(*) obtained by varying the elevation cut-off angle

JPL POD Radial Differences

<u>GPS Red-dyn vs GPS/SLR/DOR Dyn</u> <u>GPS Red-dyn vs SLR/DOR RedDyn</u>

What are the J2 geographically correlated orbit differences ?

JPL Geographical Differences with RLSE09a

Cy 1–30 Bin RMS = 5.0 mm - CNES Tune00

Excellent agreement between GSFC and GDRC J1 orbits both prior and post GPS receiver degradation

Jason-1 GSFC std0905 - GDRC Radial orbit differences (cycles 11 - 239)

What are the residual modelling errors for Jason-2 & Jason-1

- 1. Surface forces in general including radiation pressure.
- 2. Time-variable gravity not included in operational model.
- 3. ITRF reference frame issues including station coordinate error and modeling of station specific issues.
 - ITRF2008 will be available late 2009; Could be used for a GDR-D orbit reprocessing in 2010 or 2011 (after validation).
- 4. For Jason-1 handling of DORIS USO SAA effect, in particular for cycles 1-90.

Time Varying Gravity Components

Effect of residual TVG on J1 orbit: (operationally modeled: atgrav+annual) -(atgrav+mog2d+gldas + est. 60x60/mo Grace)

2.5 mm annual residual amplitude from 5x5 degree radial orbit differences over 2004-2005

Radial Orbit differences – Geographically correlated difference

(GRGS 10-day GRACE solutions vs. GDRC EIGEN-GL04 standard)

POD Issues (1)

- 1. For Jason-1: How do we construct a continuous time series with tracking systems that are variable in temporal coverage (DORIS/USO and GPS)?
- 2. For Jason-2: Monitor GPS performance around SAA.
- Improvement of Radiation Pressure Models for Jason-2 (at least 3-4 mm differences are evident in dyn vs red-dyn orbits).
- Stability of the ITRF (a) ie. tracking coordinates *AND* bias implementation for SLR stations. (b) centering of orbits and stability in Z of reference frame.
- 5. Modelling of Time-variable gravity not in GDRC standards (Responsible for 2.5 to 5 mm radial differences aperiordic signals).

POD Issues (2)

6. Open modelling issues:

- Atmospheric Loading (e.g. via NCEP or ECMWF) & Hydrological loading on tracking stations.
- Geocenter.
- High order ionosphere corrections (DORIS).
- Troposphere modelling for DORIS & GPS.

 Modelling of laser measurement depends on station laser parameters such as pulse width and type of laser system (single photon or MCP) (Can be responsible for 1 cm effect on Lageos - smaller for Jason).

Importance of Geodetic Networks for Satellite Altimetry

- Satellite Laser Ranging
- DORIS
- GNSS

International Laser Ranging Service

URL:

http://ilrs.gsfc.nasa.gov

http://ids.cls.fr

http://igscb.jpl.nasa.gov

Proposal for Deployment of Next Generation Geodetic Networks is underway for submission to NASA (for the NASA contribution)

Farewell to DORIS Network Manager, Hervé Fagard

- Network manager for DORIS; Responsible for maintenance and deployment of DORIS stations for 20 yrs.
- Oversaw DORIS station improvement program (2000 to the present)
- OSTST owes Hervé a great debt as he leaves for new job at the IGN.

Backups

deg. 3/ord. 1 harmonic

- 10-day fields are noisier, each individual solution doesn't necessarily represent the best available gravity model
- Long term behavior is consistent between different series of GRACE fields, and not modeled in current POE standards

Orbit centering affects mean radial error over water

Jason-1 GSFC std0905 - GDRc Mean radial orbit differences over water (cycles 11 - 239)

cycle

Typical Jason-2 GPS Data Coverage

Points on map indicate locations where 4 or more GPS satellites are being tracked for the dates, Aug 10-19, 2008

Evaluation of ITRF2005 SLR terrestrial reference frame – mean residuals

Jason1 Mean SLR residuals

Correlated orbit differences for Jason-1 and Topex/Poseidon

Mean of radial differences

RMS of radial differences

OSTST Meeting

Hobart 12-15 March 2007