

Synergy between glider and coastal altimetry: case study in the Balearic Sea

A. Pascual, J. Bouffard, S. Ruiz, B. Garau, M. Martínez, E. Vidal-Vijande, M. Bonet, K. Sebastian, R. Escudier, Y. Faugère, M. I. Pujol, L. Carrère, and J. Tintoré

IMEDEA(CSIC-UIB) · TMOOS Dept · Mallorca (Spain) CLS · Space Oceanography Division · Toulouse (France)

OSTST Meeting

Seattle, 22-24 June 2009

Outline

- **Objectives**
- **Glider Missions**
- Data Sets
- **Methodology**
- **Area of Study**
- **Results: April 2008 mission**
- **Summary and Future Work**

Objectives

GENERAL OBJECTIVE:

To characterize of coastal fronts combining altimetry and glider data

SPECIFIC OBJECTIVES:

- To explore the use and limitations of altimetry data in the coastal area
- To test the feasibility of the gliders technology usage

Framework:

ECOOP/ MyOcean EU project / OSTST proposal

Glider Missions Background

We have carried out 9 glider missions from July 2007 to June 2009 in the Western Mediterranean Sea following altimeter tracks

6000 full CTD casts + oxigen, chlorophyll turbidity (180 m)

- **ENVISAT:**
- SHIP PRESENTATION observations
 - o days): 6 missions up to now

JASON-1/2:

- Alboran C. et al. July Poster: Ruiz Jason-2: 0 & 1 aric Sea: T-70 (August
 - 2008). Cycles Jason-2: 4 & 5
- JASON-1 (new orbit):
 - Balearic Sea: T-70 (May 2009). SINOCOP experiment: Great challenge: 2 gliders covering an area of 50 x 40 km2

Data Sets

Glider

- Variables:
 - P, T, S, oxig., chl., turb. Depth averaged GPS currents
- Vertical extension:
 - 10-180 m
- Horizontal resolution:

400 m

Envisat

- Along track SLA (1 Hz / 20 Hz) Horizontal resolution: 7 km / 500 m
- Corrections:
 - Tides, HR HF barotropic motion (DAC), ...
- Gridded products
- MDT: Mean Dynamic Topography (Rio et al. 2007)
- ADT = SLA + MDT

I • M • E • D • E • A Institut Mediterrani d'Estudis Avançats

1000

500

Glider Data Processing

- Dynamic height (DH) computed from P, T, S profiles with a ref. level 180 m.
- Projection of the glider observation position onto the closest track point.
- Different filters (lanczos, loess, Powen-Leben) are used for the computation of surface geostrophic velocities (Vg surf 180) from DH.
- Computation of absolute geostrophic currents by combining Vg surf 180 and depth averaged GPS currents:

$$Vg_{abs} = Vg_{surf_{180}} + Vg_{180_{bottom}}$$

denotes vertical average over the upper 180 m (glider vertical extension)

Area of Study: Balearic Sea

April 2008 mission: an intense eddy

Sinoptic view from remote sensing data

Color: SST. Source: ICM. Vectors: Absolute geostrophic currents from DT merged altimeter gridded fields. Source: AVISO.

Glider results: geostrophic velocity calculation

• Slope calculation: standard vs Powell et Leben (2004)

- Main dynamical patterns observed with the 3 methods
- Significant differences in the balearic and Iberic coastal zones (resp 6 and 3 cm/s)

Glider vs altimetry currents

1 Hz data

- Correlation: 0.76
- Rms diff: 6.2 cm/s
- Err var: 127 %

- Correlation: 0.71

- Rms diff: 10.4 cm/s
- Err var: 50 %

 Reasonable good agreement but huge disagreements (>20cm/s) in the Balearic coastal zone and less amplitude in the glider.

• "Correction ref" allows to have more intense glider signals but even larger than in altimetry and less wellphased than without applying this correction.

Glider vs altimetry currents

20 Hz data

Altimetry VS Glider

- Correlation: 0.97
- Rms diff: 4.0 cm/s
- Err var: 5 %

• Disagreements in the Balearic coastal zone are still significant but smaller than with 1 Hz. MDT related?

•20 Hz improves the overall comparison between altimetry and glider velocities.

Summary & Future Work

- Gliders are useful platforms for exploring limitations of coastal altimetry.
- New methodology and data processing in the velocity computation improves the altimetry-glider comparisons.
- The impact of usig HF along track altimetric data is tremendous in the coastal zone (correlation = 0.97, error variance = 5%).
- Future work:
 - Dedicated mean dynamic topography
 - Multi-sensor approach experiments
 - Data assimilation into numerical models to better understand coastal and mesoscale dynamics (collaboration with J. Zavala – Univ. Rutgers).