Singular Value Decomposition applied on Altimeter Waveforms

P.Thibaut*, J.C.Poisson*, A. Ollivier*, E.Bronner**, N.Picot**

* CLS ** *CNES*

Seattle, USA June 2009

Context of the study

- The purpose of the SLOOP project (funded by CNES) is all in all, to improve the altimeter open ocean products.
 - Concerning the retracking of the WFs, we proposed to investigate various retracking strategies and to compare them with classical ones \rightarrow MLE, LSE, MLE2passes, NN, MAP, ... and SVD filtering

The idea is to analyse their respective performances and to select the most attractive one

➔ Some space for improving the estimation of the epoch and the SWH

• The idea is also to try to reduce the noise level of the estimations without introducing artificial along-track spatial correlation (now : 20 Hz estimation + 1Hz averaging, ...)

➔ Reduction of the noise level of the WFs before estimation

Truncated Singular Value Decomposition for Noise Reduction

- SVD is a classical technique in signal processing (developped in 1940) sometimes used to « denoise » signals.
- Waveforms filtering by SVD was first investigated by Annabelle Ollivier in his PhD Thesis (2006) with very encouraging results
 J1 Ku band raw waveforms

CENTRE NATIONAL OFFICERS SPATIALE

Truncated Singular Value Decomposition Noise Reduction

- Matricial method
- results are closely linked to size of the matrix (number of AT Wfs in the matrix)
- also to to the homogeneity of the waveform matrix
- results are closely linked to rank-k truncation

Truncated Singular Value Decomposition Noise Reduction

Truncated Singular Value Decomposition Noise Reduction

Impact on range

Wavenumber spectrum (m2.km)

Impact on SWH

SLA spectrum – Ku band

No impact of the SVD on mispointing angle

Conclusions

- SVD allows a strong noise reduction on SWH and range
- SVD allows a gain in SLA rms measurements by a factor between 1.2 (weak waves) to 2 (strong waves).
- SVD allows to pass from a 7 km resolution (present 1 Hz products) to a 1.2 resolution (6 Hz) with an equivalent noise (precision of the SLA).

Thank you !

Differences between Jason-1 and Jason-2 waveforms

→ Due to telemetry rate, Jason-1 waveforms are compressed

