Present uncertainties and future refinement of the sea state bias correction

D. Vandemark¹, S. Labroue², N. Tran², H. Feng¹, R. Scharroo³, B. Beckley⁴, and numerous others...

¹University of New Hampshire, Durham, NH ²CLS / Space Oceanography Division, Ramonville St-Agne, France ³Altimetrics LLC, Cornish, NH ⁴SGT, Inc. Greenbelt MD

Content

- Brief introduction
- The error budget
- Path to refinement

Physically this is an error associated with the radar scattering from waves within the footprint. This skews the range estimate below MSL. But also tied to radar tracking of sea level and waveform retrievals.

.:. **Empirically** the SSB determined using repeat pass altimeter range measurement differences and wave information (**X**):

 Δ range (cm) = ϵ = r_{t1} - r_{t2} = ϵ (**X**) + $\sigma \approx 3\%$ SWH

SSB determined using repeat measurement differences (not geophysics):

$$\Delta$$
range (cm) = ϵ = $r_{t1} - r_{t2} = \epsilon (\mathbf{X}) + 9^{-1} \approx 3\%$ SWH

Issues and error sources in solving for and applying ϵ :

- A. All models are empirically devised using each satellite's range data to relate altimeter-measured SWH and U (wind speed) to a range correction
 - X imposed by pragmatic choice
 - Inherent dependence between range, SWH, U from retracking of waveforms
 - Stability and quality of input SWH and U are first-order issues (GDR_B->C)
- B. Statistical method for solving ϵ
 - Polynomials in SWH, U (3 or 4 terms)
 - Non-parametric solutions (NP linear local kernel: Gaspar et al, 2002)
- C. Geophysical error due to choice of X (see WaveModel work)

SSB determined using repeat measurement differences (not geophysics):

$$\Delta$$
range (cm) = ϵ = $r_{t1} - r_{t2} = \epsilon (X) + 9^{-1} \approx 3\%$ SWH

Issues and error sources in solving for E:

D. Does σ tend to 0?

- This error term holds Mission Correction terms such as orbits, HF Barotropic, ionosphere, tides. RESULT -> Possible geographically correlated errors - NEED best models
- E. Lack of independent ground truth sets this correction apart in terms of computed solutions, error estimation, and metrics for validation

D. Does σ tend to 0?

• An example related to orbit change...

Suite of SSB models across platforms

Mission	Data	Approach	Input	Wind	Description	Reference
	Version		parameters	algorithm		
Jason-2	GDR	Collinear /NP	SWH, U	Collard [2004] / 2D	Empirical model derived from 3 years (cycles 1-111) of Jason-1 GDR_b	Labroue [2008]
					products	
Jason-1	GDR-C	Collinear /NP	SWH, U	Collard [2004] / 2D	Empirical model derived from 3 years	Labroue [2008]
					(cycles 1-111) of Jason-1 GDR_b	
					products	
TP side B	MGDR	Crossover /	SWH, U	Modified Chelton and	Empirical model derived from side A	Gaspar et al [1996]
		BM4		Wentz [1991] /1D	data (cycles 2-30)	
TP side A	MGDR	Crossover /	SWH, U	Modified Chelton and	Empirical model derived from side A	Gaspar et al [1996]
		BM4		Wentz [1991] /1D	data (cycles 2-30)	
Envisat	GDR	Crossover /NP	SWH, U	Abdallah [2006] /1D	Empirical model derived from	Labroue [2005]
					1 year (cycles 25-35) of data	

• All models are empirically derived using the satellite range data to relate altimeter-measured SWH and U (wind speed) to a range correction

- Alternatives available: NP models for TP (CLS), Hybrid models for GFO,Geosat RA-2 and Poseidon (R. Scharrooo), TP A/B (Chambers)
- More consistent retracking leading to closer agreement between TP and Jason models, but empirical nature still warrants satellite-specific models
- Can pose overall error discussion using J1 or J2 data and models

Ifremer

cnes

Comparison of Jason-1 & Jason-2 SSB

Jason-2 SSB

- J2 and J1 SSB both estimated on the tandem period data (20 cycles / GDR products)
- estimation with collinear approach (10-day differences)

OSTST 2009 meeting - Seattle

UNIVERSITY of NEW HAMPSHIRE

The Error Budget and SSB - 2 Input models

To date: BIAS 1-2 cm; RMS 1% SWH (2.3 cm @ SWH=2.3, Vincent et al 2003)

Consensus since T/P: ~ 1% SWH, O(1-5 cm)

- obtained via uncertainty in model estimation, not by independent methods. SWH,Wind dependence maps to higher error with increasing latitude.

Quantification of spatial/temporal errors limited and difficult w/o ground truth (TP asc/desc certainly a dramatic issue, but see also Glazman/ Fu work; Kumar et al., 2003; Minster et al, etc...)

Stability of SSB models might be valued as highly as accuracy (e.g. for sea level rise work) - an unresolved absolute bias is intrinsic to all SSB derivations but needs to be handled consistently

New SSB model using added wave model data - also useful for 2D SSB model error assessment

Ifremer

cnes

Gain of ~ 0.5% SWH in repeat pass range residual reduction over the NP Jason-1 model

Physically - the new model acts to improve correction associated with wave age change.

OSTST 2009 meeting - Seattle

The Error Budget and SSB

Recent addition of wave model data to SSB study allowing some refinement by comparison of 2D and 3D models assessing unresolved spatial error

The Error Budget and SSB

Single Pass (54) Example, Jason-1

Spatial scale of mean wave period change > wind speed change

SSB model differences ("EMB error") at the 1-2 cm level and 200-1000 km length scale (SWH ~ 3 m)

Spatial scales of \triangle SSB > SSHA dynamics. Same for HF uncertainty magnitude.

The Error Budget and SSB - Jason-1,2 NP

Spatial	Processes	Estimate	Method
Uncertainty			
a) $< 20 \text{ km}$	Input (SWH, U)	< 1 cm rms	Evaluation of
	noise or error		retracking,
			prefiltering SWH,U
b) 20 to 2000 km	Fronts, coastal	0.5%-1% SWH	Wave model SSB
	waters, swell	Unresolved EM bias	studies, previous
	propagation,		literature
	wave/current		
c) >2000 km	Wave age quasi-	< 5? cm	3D -2D SSB
	static spatially		studies, possibly
	(continents and		using cal/val or tide
	storm tracks)		gauge sites
Temporal			
Uncertainty			
d) < 20 days	Same a) and b)		
	above		
e) > 20 days	As for c), seasonal	< 5? cm	
	storm tracks ->		
	swell pools		
Absolute Bias	inherent to model	1-2 cm	see Gaspar 2002
Drift	Drift in inputs	1.0 mm SWH	5 cm/yr SWH linear
	(SWH,U)	0.2 mm U	25 cm/s WIND

Ifremer

Path for future refinement

- Standard NP SSB: Improved error determination and stable long term models for each platform
 - Do no harm (maintain absolute bias consistency and limit noise due to SWH, U) but remedy MLE3 vs. MLE4 issues
 - Longer-scale spatial error quantification (impacts on MSS, cal/val etc.)
 - Resolve J1 and J2 issues and perhaps go back to TP retracked for NASA Measures project
- 3 Input SSB: Alternative SSB solutions for Jason-1,2 from the SLOOP project
 - Complete refined models and document the expected changes
 - Offer as alternative in GDR and/or RADS databases
 - Tradeoff analysis for benefits vs. cost of implementation
 - Apparent gain in longer wavelength/time corrections order 0.5%SWH
 - Wave model adds another data stream to monitor for stability/accuracy

Thanks

Global performances with collinear method data from 2002, 2003 & 2004

Variance explained by different models minus the variance explained by BM1 = -3.8% SWH (cm²)						
	2002	2003	2004			
SSB (SWH, U_alt)	2.68	2.85	3.07			
SSB (SWH, U_alt, H_swell)	3.44	3.69	3.97			
SSB (SWH, U_alt, Tm)	3.94	4.21	4.62			
SSB (SWH, U_alt, X)_3c_Hswell	4.09	4.58	4.98			
SSB (SWH, U_alt, X)_3c_Tm	4.25	4.76	5.16			

var (Δ SSH_withSSB_BM1) – var (Δ SSH_withSSB_tested)

- Differences 3D-2D models : ~1.39 cm²
- Differences class-based-2D models : ~1.86 cm²

Finer look at Jason-1 & Jason-2 Wind Speed

- Differences of shape of the wind speed distribution
- Test of gross linear adjustments of sigma0 and SWH before recomputing the wind speed (S. Phillips)
- J2 recomputed wind speed distribution looks more like the J1 one

