Effect of Meridional Shear on Equatorial Waves - Revisited

Ted Durland, Dudley Chelton, Roland deSzoekoe and Roger Samelson
College of Oceanic and Atmospheric Sciences, Oregon State University

Motivation

SSH Standard Deviation

Chelton et al. 2003 showed that the quasi-annual Rossby wave is highly asymmetric about the equator across much of the equatorial Pacific. They also showed that when the shallow water equations are linearized about a background current system representative of the upper 250m, the numerically calculated SSH eigenfunctions of the first meridional mode Rossby wave bear a striking resemblance to the corresponding first sets of altimeter observations.

Research Goal

In order to use equatorial wave theory effectively to explain the observations, we first seek a comprehensive understanding of how the equatorial current system affects the equatorial wave spectrum:

- Source(s) of dispersion and structure modification?
- (Advection, background pv anomalies, layer thickness anomalies)

Why are different modes affected differently?
- Is complementary modification of mode structures/dispersion relations inevitable or fortuitous?

Perturbation expansion solution

After Ripp and Maringone 1983

Shallow water equations linearized about weak, geostrophic, mean zonal currents

- \(u = u_0 + \delta u \)
- \(v = v_0 + \delta v \)
- \(h = h_0 + \delta h \)

\(\beta \) is the Coriolis parameter.

- \(u_0 \) is the basic state (mean) zonal current in the upper layer.
- \(v_0 \) is the mean meridional current.
- \(h_0 \) is the mean depth of the upper layer.

Three modes when meridional mode 1 is meridional 80 (black) and surface layer zonal wind field (dashed)

Phase speed modification

\(\frac{dn}{d\lambda} = -\frac{1}{2} f \left[\frac{1}{2} \delta u \left(\frac{1}{2} \delta v \right) \right] \)

- \(\delta u \) is the deviation of the zonal current from the mean.
- \(\delta v \) is the deviation of the meridional current from the mean.
- \(f \) is the Coriolis parameter.

\(\frac{dn}{d\lambda} = -\frac{1}{2} \beta \left[\frac{1}{2} \delta u \right] \)

- \(\beta \) is the Coriolis parameter.

\(\delta u \) and \(\delta v \) are the deviations of the zonal and meridional currents from the mean.\n

Eigenfunction modification

Expressed in terms of Hermite solutions:

\(A_A = \frac{1}{\sqrt{2\pi \sigma}} \int_{-\infty}^{\infty} \exp \left[-\frac{1}{2} \sigma^2 \left(u - \mu \right)^2 \right] \mathrm{d}u \)

- \(A_A \) is the amplitude of the ith Hermite function.
- \(\mu \) is the mean of the distribution.
- \(\sigma \) is the standard deviation.

Modifications to mode-1 long Rossby wave h structure

- \(U(y) = 0.3 \, U(140W,y) \)

Mode 1 advected primarily by Equatorial Undercurrent, and also slowed down by negative pv-gradient anomaly produced by negative Uyy on flanks of undercurrent.

Contributions to long Rossby wave anomaly

- Mode 1, \(k = 1 \) and \(k = 2 \)
- Doppler effect

Mode 2 advected primarily by South Equatorial Current, and also sped up by positive pv-gradient anomaly produced by negative Uyy at peak of undercurrent.

Higher order solution

Required to accurately predict structure and phase speed for full-strength currents. \(\partial u \) solution correctly predicts trends.

Empirically derived expansion coefficient (right) show that eigenfunction modified by full-strength currents can still be approximated with minimal number of Hermite modes.