Assessment of Jason-2 Orbit Quality Using SSH Cross-Calibration with Jason-1 and Envisat

Introduction: This poster aims at showing results from the Sea Level Height Cross-over analysis to enlighten geographically related patterns or behaviors signing on the ocean altimetric observations using the 3 precise altimetric missions Envisat (EN), Jason-1 (J1) and Jason-2 (J2). This enables to quantify the very good performances of the Jason-2 orbits both in Near Real Time (IGDR) and Delayed time (GDR).

Cross-calibration with Jason-1 and Envisat

Assessment of Jason-2 Orbit Quality Using SSH

- **Temporal variability**
 - Monitoring of the statistics of Ascending/Descending differences of the Sea Surface Height at cross-over.
 - Cross-overs are averaged over 4°x4° boxes and with a selection on:
 - Bathymetry > 2000m
 - 50°S<Lat<50°N
 - Oceanic variability <20cm

- **Geographic variability**
 - Average of the cyclic average per 4°x4° box smoothed 11x11 boxes
 - Standard deviation of the cyclic average per 4°x4° box smoothed 11x11 boxes

Variability

- Small geographical difference
- Variability: Temporal stability improved in GDR (Mean Std: 1.6cm/1.2cm)
- Variability: Reduction of the geographical effect of GDR/IGDR due to the difference POE-MOE
- Geographic Biases: Reduction of the 3.8 mm bias between Asc/Dsc in IGDR for GDR (POE)
- Geographic effect of GDR/IGDR
- Variability: Time stability improved in GDR (Mean Std: 1.9cm/1.4cm)

To conclude

- In GDR (with POE), the time variability is:
 - Very much decreased for J1
 - Slightly decreased for J2
 - Almost unchanged for EN

- Compared to the IGDR (MOE) which is consistent with the plots here-above

Further information on the missions comparison can be seen on A.Ollivier et al., Y. Faugere et al. and S. Philips et al. Presentations and posters.