Annual Cycle in Coastal Sea Level from Tide Gauges and Altimetry

S. V. Vinogradov and R. M. Ponte
Atmospheric and Environmental Research, Inc.,
131 Hartwell Avenue, Lexington, MA 02421, USA

1 (781) 761-2256
sergey@aer.com

Introduction

Tide gauges (TG) provide a unique dataset extending many decades back in time, but coverage is restricted to continental boundaries and a few oceanic islands, and the extent to which the tide gauge records can be used to infer low-frequency, large-scale sea level behavior remains unclear.

We compare coastal and island TG locations and nearby shallow and deep ocean, as inferred from altimetry (Figure 1), in order to explore the applicability of TG records in studying open ocean variability, and the potential use of altimetry in near-coastal waters on annual period.

Data and Methods

346 TGs from Permanent Service for Mean Sea Level (PSMSL) were used to compute mean annual cycle from monthly-averaged series for the period 01/1992–12/2001.

The PO.DAAC (NASA/JPL) along-track SSH product from TOPEX/POSEIDON (T/P) was monthly-averaged to compute monthly-averaged annual cycle at each point, with along-track spatial resolution ~7 km.

All suitable T/P data were collected in the proximity of every TG. The T/P data were split into “shallow” and “deep” sets relative to 200 m isobath – a typical outer limit of the continental shelf. Annual cycles within each T/P set were averaged to produce mean “shallow” and “deep” annual cycles. We compare SSH annual cycles in:

• Shallow vs deep T/P, R = 0.92 (Figure 6)
• Shallow vs deep T/P, R = 0.64 (Figure 4)
• Differences can exceed standard deviations
• All suitable T/P data were collected in the proximity of every TG. The T/P data were split into “shallow” and “deep” sets relative to 200 m isobath – a typical outer limit of the continental shelf. Annual cycles within each T/P set were averaged to produce mean “shallow” and “deep” annual cycles. We compare SSH annual cycles in:

Annual Amplitudes

• TG vs shallow T/P, R = 0.79 (Figure 3)
• TG amplitudes (a few mm to 0.2 m) tend to be larger
• Some TG signals reach 0.5 m (e.g., Ganges River delta)
• TG amplitudes are smaller than shallow T/P on the US East Coast, Chinese East Coast, South Australian Coast
• “Coastal” TG correlate with T/P better than “islands” (0.82 vs 0.42)
• Standard deviations of the mean T/P values are usually <10 mm

Annual Phases

• TG vs shallow T/P, R = 0.90 (Figure 5)
• Phases in TG and T/P are better correlated than amplitudes
• Spatial variability in shallow T/P is 1-2 months
• Island stations usually have less spatial variability
• Out-of-phase outliers are not necessarily amplitude outliers (exceptions are western boundary currents, South Australian Coast)

Some Conclusions

• Local effects like inner harbor dynamics, river outflow, and land-based atmospheric forcing make SSH annual variability at the coast different from the ocean.
• Some ocean islands may exhibit large differences with nearby circulation due to positioning of TG in very shallow and semi-enclosed harbors and lagoons.
• The difference between annual cycle patterns at the TG stations and nearby T/P data makes TG generally unsuitable for inferring the mean annual cycle in nearby open waters.
• The TG annual cycles may provide an important data constraint for high-resolution coastal ocean models.
• The along-track T/P data provides a robust estimate of the annual cycle even in very shallow waters, making it suitable for use in constraining ocean models.
• Combining TG and T/P data with high-resolution models involving oceanic, terrestrial, and atmospheric dynamics may provide a better understanding of the complexity in SSH annual cycle near the coast.