High resolution brings global DRAKKAR ocean simulations closer to AVISO at large time/space scales
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The DRAKKAR ocean modelling Group is led by scientists from
France, Germany, and the UK, with several collaborations in the
This  group
continuously develops, upgrades, and integrates a hierarchy of global and
regional ocean/sea-ice models over the period 1960-present, making
continuous use of available observed datasets (forcing, validation, OSSEs).

http://www-meom.hmg.inpg.fr/Web/Projets/DRAKKAR/

+ NEMO ocean/sea-ice/C/CFC,, z-level code
* Global 2°, Global 1°, Global %4°, Global %4°

operational and research oceanographic communities.

* Stand-alone configurations
* Nested configurations

« Regional & global studies over 1958-2004
100+ users collaborating on scientific studies

OST/ST supports DRAKKAR to develop various synergies between ocean observations, simulations, and

theories. This includes atmospheric forcing, OSSEs,

process studies from observations and models, and

In the present study, we collocate four 1958-2004 global ocean

simulations (2°, 1°, 1/2°, 1/4°) onto the 1993-2004 AVISO database to demonstrate that increasing model

resolution largely i

level variability properties, not only at eddy scales as already known, but

also at climatic (large-scale & slow) scales. We describe the impact of model resolution on the realism of :
1. Magnitude and Distribution of interannual variabilities (Global)
9. Spatiotemporal modes (EOFs) of interannual variability (North Atlantic)
3. Phase of local interannual variabilities (Global)
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STATISTICAL ANALYSIS

l.a Magnitude of interannual variabilities (Global)
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@ Strong enhancement of interannual variability at eddy-admitting
resolution.

@ This is particularly clear where mesoscale eddies are present (i.c.
Southern Ocean)

@ High resolution strongly enhances the LARGE-SCALE (L>6° or 12°)
interannual variability as well, involved in ocean-atmosphere coupling.

@ Still room for improvement at 1/4° ;
higher resolution + finer/stronger surface forcing

2. Spatiotemporal modes of interannual variabilities
in the North Atlantic

Step 1: compute

Sea Level Anomaly standard deviation maps of AVISO and
DRAKKAR (fields were first collocated in time and space)
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1.b Distribution of interannual variabilities (Global)
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improvements.

@ Strong improvement of SLA interannual variability maps with
increasing resolution, especially at mid/high latitudes.

@ Like for standard deviations, both laminar models yield very similar
variability maps. The 1/2° and 1/4° models yield successive

@ High resolution largely improves the geographical distribution of the
LARGE-SCALE (L>6° or 12°) interannual variability as well, involved
in ocean-atmosphere coupling.

3. Phase of local interannual variabilities
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