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Introduction

In the Kalman filter standard algorithm, the computatiormahplexity of the observational

update is proportional to the cube of the numbpeaf observations (leading behaviour for

largey). In realistic atmospheric or oceanic applications, tiftisoleads to a prohibitive cost
and to the necessity of simplifying the problem by aggremptir dropping observations. If

the filter error covariance matrices are in square root famiiQ square root or ensemble

Kalman filters), the standard algorithm can be transformduktlinear iny, providing that
the observation error covariance matrix is diagonal. Itnsraportant drawback of this

transformed algorithm often leading to assume uncorm@labservation errors for the sake

of numerical efficiency. We show here that the linearity af transformed algorithm in
can be preserved for other forms of the observation erraarcavce matrix. In particular,
quite general correlation structures (with analytic astotip expression) can be simulatec
by adding gradient observations to the original obsermatgctor.
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Analysis update in square
root or ensemble Kalman filters

Analysis schemes

If the Kalman filter forecast error covariance matrix is #falie in square root forn®/ =

s/s/? the use of the Sherman-Morrison-Woodbury (SMW) formutdte Pham et al.,
1998) to analysis equations in the forms (s the observational update increment):

ox = ST+ HSHIR-I@ESH =S TR oy (1)
(2)

In the ENKF, an ensemble of correctiains is computed from an ensemble of innovation
oy. The SMW formula is usually not usefi\ensen, 2003):

st = s/ + @SHTR - (HS/) /2
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5x = ST (HsHT [(Hsf)(Hsf 71 R| oy (3)

Computational complexities

We notex the size of the state vectarthe size of the observation vector, anthe number
of error modes in the square root filter (ensemble size weEhKF).

Formulas 1 and 2 are advantageous onR kan be inverted at low cost. For instanceRf
IS diagonal, the asymptotic computational complexity efifalas 1 and 2 are:
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Ci ~yr +€+xr and Cy ~yr +§+:m°

These expressions are linearyrandz. Large observation vectors can be handled. T
computational complexity of formula 3 (appliedimes) is

(4)
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Cég ~ % + 2ry” + 2ray (5)
This expression is not linear ;n Formula 3 can then be applied onlyyifs quite small. A
usual strategy consists in localizing the observationdhtgs by subdomaingiputekamer
and Mitchell, 1998) and splitting the analysis updates into severatsegach step assimilat-
Ing a subset of observations. SMW formula can be nonethalgssed in the localization
strategy. IfR Is diagonal, the computational complexity of the EnKF asmlyalso becomes

linear iny and..
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| jnear transformation of the
observation vector to simulate correlations

Rationale

The observational update given by formula 1 also minimizes

7 = oxTP/ox + (6y — Hox)TR ™ (6y — Hox) (6)

If we transform the observation vector by a regular (rankaktmiy) linear transformation
operatorT: §y ™ = Tdy, H" = TH, J remains unchanged if

R!=T/RT'T (7)
Simple application: gradient operator in one dimension

Let us introduce the transformatign” = Ty = [$ ] y whereT is the identity matrix,
2

T, the gradient operatoty ;; = 5z'j_A(5é—1>ﬂ'. If R is homogeneous, i.B" = [ OI OI]
; o)
1
thenR verifies - .
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and it can be proven that this is a consistent discretizatfdhe inverse of the covariance

function ,
O
U exp (—M> with ¢ =20
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Application to altimetry in the North Brazil current

Experiment:A 5-year simulation of the circulation in the North Brazil current regiopésformed with a
regional configuration of the NEMO model. The 300 output snapshots (one edays® determine theue
states. The mean of this ensemble is taken ababti@round state (see Figure 1, upper panel). To parameter
the background error covariance matrix, we use the covariance of S59atgpsne per month over 5 years

except those that are less than 1 month away from the true state)e Higoottom panel, illustrates what the

sguare root of the matrix diagonal looks like.

As observation, Sea Surface Height (SSH) is ob-
served over the full domain, with4acm error stan-
dard deviation. Two observation vectorsare gen-
erated from the true state: a first one, by adding un-
correlated observation noise, and a second one, by
adding a correlated observation noise, with a covari-
ance maitrix given by equation 7, with a 2D gradient
transformation. The noise is scaled to have a uni-
form standard deviation = 0.04 m. The observa-
tion error covariance is parameterized either with a
diagonal matrix, or with a non-diagonal matrix, fol-
lowing the method described previously.
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Figure 1. Mean (top panels) and standard devie
tion (bottom panels) of the 5 years simulation, for
the sea surface height (in m, left panels), and se
surface velocity (in m/s, right panels).
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Uncorrelated errors

Observation errors are spatially uncorrelated, and
R is diagonal. Figure 2 on the left shows the error
standard deviation, as measured using the ensem-
ble (top panels), and as estimated by the scheme
(the square root of the diagonal &“, bottom
panels). It is shown for altimetry (in m, left pan-
els) and for velocity (in m/s, right panels).
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Correlated errors, with diagonRl parameterization
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Observation errors are spatially correlated, Buis .
taken diagonal. Figure 3 on the right displays the
same fields as Figure 2, for this experiment. The
Inappropriate parameterization Bf leads to a sig-
nificant discrepancy between the errors estimated by
the ensemble and by the error modes.
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Correlated errors, with consisteRtparameterization
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Observation errors are spatially correlated, Bnd

IS parameterized using the observation gradient
method. The coherence between errors estimated
with the ensemble and with the error modes is re-
stored.
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Conclusions

Classical algorithms to compute the observational update in Kalmars fdte penalized by a computationa
complexity proportional to the cube of the number of observations. In squarerensemble Kalman filters,
this algorithm can be modified to become linear in the number of observatithresaobservation error covari-
ance matrix is diagonal. Here it has been demonstrated that these barebtsareserved with a non-diagone
parameterization of the observation error covariance m&rixrhe method simulates correlations by appl
cation of a linear transformation of the observation vector (with diagBnhal the transformed space). It is
shown especially efficient to describe simple correlation strastiilgradient observations can be added to tl

observation vector. This is possible for instance if the obsemst@we distributed along lines or at the node

of two-dimensional grids so that discrete gradients can be computed by stibgtsgiccessive observations.

The method has been tested with the aim of reconstructing the circulatithre dflorth Brazil current, as

simulated by d /4° model of the Tropical Atlantic Ocean, using synthetic altimetric olegrns. Assuming a

diagonal observation error covariance matrix in presence of a atgtehoise leads to a non-optimal solutio
that underestimates the error variance. Optimal parameterizatiadhe observation error covariance matri
usually produce solutions that are close to minimizing the resultiray.err
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