
Conclusions
Classical algorithms to compute the observational update in Kalman filters are penalized by a computational
complexity proportional to the cube of the number of observations. In square rootor ensemble Kalman filters,
this algorithm can be modified to become linear in the number of observations if the observation error covari-
ance matrix is diagonal. Here it has been demonstrated that these benefits can be preserved with a non-diagonal
parameterization of the observation error covariance matrixR. The method simulates correlations by appli-
cation of a linear transformation of the observation vector (with diagonalR in the transformed space). It is
shown especially efficient to describe simple correlation structures if gradient observations can be added to the
observation vector. This is possible for instance if the observations are distributed along lines or at the nodes
of two-dimensional grids so that discrete gradients can be computed by substracting successive observations.

The method has been tested with the aim of reconstructing the circulation ofthe North Brazil current, as
simulated by a1/4◦ model of the Tropical Atlantic Ocean, using synthetic altimetric observations. Assuming a
diagonal observation error covariance matrix in presence of a correlated noise leads to a non-optimal solution
that underestimates the error variance. Optimal parameterizations ofthe observation error covariance matrix
usually produce solutions that are close to minimizing the resulting error.

This work was conducted as part of the MERSEA project funded by the E.U. (Contract No. AIP3-CT-2003-502885), with additional
support from CNES. The calculations were performed with the support of IDRIS/CNRS.

References

Evensen, G., The ensemble Kalman filter: Theoretical formulation and practical implementation,Ocean Dynamics, 53, 343–367,
2003.

Houtekamer, P. L., and H. L. Mitchell, Data assimilation usingan Ensemble Kalman Filter technique,Monthly Weather Review, 126,
796–811, 1998.

Pham, D. T., J. Verron, and M. C. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanography,
J. Marine. Sys., 16, 323–340, 1998.

Application to altimetry in the North Brazil current
Experiment:A 5-year simulation of the circulation in the North Brazil current region isperformed with a
regional configuration of the NEMO model. The 300 output snapshots (one every 6days) determine thetrue
states. The mean of this ensemble is taken as thebackground state (see Figure 1, upper panel). To parameterize
the background error covariance matrix, we use the covariance of 59 snapshots (one per month over 5 years,
except those that are less than 1 month away from the true state). Figure 1, bottom panel, illustrates what the
square root of the matrix diagonal looks like.

As observation, Sea Surface Height (SSH) is ob-
served over the full domain, with a4 cm error stan-
dard deviation.Two observation vectorsare gen-
erated from the true state: a first one, by adding un-
correlated observation noise, and a second one, by
adding a correlated observation noise, with a covari-
ance matrix given by equation 7, with a 2D gradient
transformation. The noise is scaled to have a uni-
form standard deviationσ = 0.04 m. The observa-
tion error covariance is parameterized either with a
diagonal matrix, or with a non-diagonal matrix, fol-
lowing the method described previously.
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Figure 1: Mean (top panels) and standard devia-
tion (bottom panels) of the 5 years simulation, for
the sea surface height (in m, left panels), and sea
surface velocity (in m/s, right panels).

Uncorrelated errors
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Observation errors are spatially uncorrelated, and
R is diagonal. Figure 2 on the left shows the error
standard deviation, as measured using the ensem-
ble (top panels), and as estimated by the scheme
(the square root of the diagonal ofPa, bottom
panels). It is shown for altimetry (in m, left pan-
els) and for velocity (in m/s, right panels).

Correlated errors, with diagonalR parameterization

Observation errors are spatially correlated, butR is
taken diagonal. Figure 3 on the right displays the
same fields as Figure 2, for this experiment. The
inappropriate parameterization ofR leads to a sig-
nificant discrepancy between the errors estimated by
the ensemble and by the error modes.
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Correlated errors, with consistentR parameterization
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Observation errors are spatially correlated, andR

is parameterized using the observation gradient
method. The coherence between errors estimated
with the ensemble and with the error modes is re-
stored.

Linear transformation of the
observation vector to simulate correlations
Rationale

The observational update given by formula 1 also minimizes

J = δxTPf−1
δx + (δy − Hδx)TR−1(δy − Hδx) (6)

If we transform the observation vector by a regular (rank equal to y) linear transformation
operatorT: δy+ = Tδy, H+ = TH, J remains unchanged if

R−1 = TTR+−1
T (7)

Simple application: gradient operator in one dimension

Let us introduce the transformationy+ = Ty =

[

T1
T2

]

y whereT1 is the identity matrix,

T2 the gradient operator,T2,ij =
δij−δi−1,j

∆ξ . If R+ is homogeneous, i.e.R+ =

[

σ2
0I 0

0 σ2
1I

]

,
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(8)

and it can be proven that this is a consistent discretizationof the inverse of the covariance
function

R(ρ) =
σ2

0

2
exp

(

−
|ρ|

ℓ

)

with ℓ =
σ0

σ1
(9)

Analysis update in square
root or ensemble Kalman filters
Analysis schemes

If the Kalman filter forecast error covariance matrix is available in square root form,Pf =

SfSfT
, the use of the Sherman-Morrison-Woodbury (SMW) formula leads (Pham et al.,

1998) to analysis equations in the forms (δx is the observational update increment):

δx = Sf [I + (HSf )TR−1(HSf )]−1(HSf )TR−1δy (1)

Sa = Sf [I + (HSf )TR−1(HSf )]−1/2. (2)

In the EnKF, an ensemble of correctionsδx is computed from an ensemble of innovations
δy. The SMW formula is usually not used (Evensen, 2003):

δx = Sf (HSf )T
[

(HSf )(HSf )T + R
]−1

δy. (3)

Computational complexities

We notex the size of the state vector,y the size of the observation vector, andr the number
of error modes in the square root filter (ensemble size with the EnKF).

Formulas 1 and 2 are advantageous only ifR can be inverted at low cost. For instance, ifR

is diagonal, the asymptotic computational complexity of formulas 1 and 2 are:

C1 ∼ yr2 +
r3

6
+ xr and CP

1 ∼ yr2 +
r3

2
+ xr2 (4)

These expressions are linear iny andx. Large observation vectors can be handled. The
computational complexity of formula 3 (appliedr times) is

CE
0 ∼

y3

3
+ 2ry2 + 2rxy (5)

This expression is not linear iny. Formula 3 can then be applied only ify is quite small. A
usual strategy consists in localizing the observational updates by subdomains (Houtekamer
and Mitchell, 1998) and splitting the analysis updates into several steps, each step assimilat-
ing a subset of observations. SMW formula can be nonethelessapplied in the localization
strategy. IfR is diagonal, the computational complexity of the EnKF analysis also becomes
linear iny andx.

Introduction
In the Kalman filter standard algorithm, the computational complexity of the observational
update is proportional to the cube of the numbery of observations (leading behaviour for
largey). In realistic atmospheric or oceanic applications, this often leads to a prohibitive cost
and to the necessity of simplifying the problem by aggregating or dropping observations. If
the filter error covariance matrices are in square root form (as in square root or ensemble
Kalman filters), the standard algorithm can be transformed to be linear iny, providing that
the observation error covariance matrix is diagonal. It is an important drawback of this
transformed algorithm often leading to assume uncorrelated observation errors for the sake
of numerical efficiency. We show here that the linearity of the transformed algorithm iny
can be preserved for other forms of the observation error covariance matrix. In particular,
quite general correlation structures (with analytic asymptotic expression) can be simulated
by adding gradient observations to the original observation vector.
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