Noveltis Use of the Corsica site to compute altimeter biases for Jason-2, Jason-1 and ENVISAT: Absolute and Regional CalVal methods

M. Cancet¹, J. Chimot¹, S. Bijac¹, P. Bonnefond², O. Laurain², E. Jeansou¹, F. Lyard³, E. Bronner⁴

¹NOVELTIS, Toulouse, France - ²OCA/GEOAZUR, Grasse, France - ³OMP/CNRS/LEGOS, Toulouse, France - ⁴CNES, Toulouse, France

Corresponding author: mathilde.cancet@noveltis.fr

CONTEXT

In situ calibration enables regular and long-term control of altimeter sea surface heights using in situ measurements. Consequently, this type of calibration is independent of other altimetry missions. Usually, the in-situ calibration of the altimeter sea surface heights is done at the vertical of a specific CalVal site by direct comparison of the altimeter data with the in situ data. NOVELTIS has developed a regional Calval technique which aims at increasing the number and the repeatability of the altimeter bias assessments by determining the altimeter bias on satellite passes located far away from the CalVal site. The strong interest of this principle is to extend the single site approach to a wider regional scale; the number of calibration opportunities is thus multiplied.

This regional Calval method can be used either considering several passes of the same mission, or combining several missions. In the frame of this study, coastal and off-shore biases were computed in Senetosa, for the Jason-2 and Jason-1 missions, on both original and interleaved orbits in the case of Jason-1. The absolute Calval method was also applied to the Envisat mission in Ajaccio. Finally, the impacts of the ocean dynamics were estimated in the case of the Jason-2 mission, considering the tidal signal and the dynamical atmospheric effects.

METHOD

Direct comparison between the altimeter SSH and the tide gauge measurements.

Absolute method

It can only used for satellite passes flying over the calibration sites

→ Jason-2 pass 085 in Senetosa (in red on the map)

→ Envisat pass 130 in Ajaccio (in blue)

These results are comparable to the bias estimations in Harvest, Bass Strait, Gavdos,...

RESULTS

ason-2 altimete	er biases i	in Senetosa
-----------------	-------------	-------------

Configuration:	Weighted bias	Jason-2 64 cycles		Jason-2 74 cycles		
• GDR-C products	(cm)	Mean	Std	Mean	Std	64 → 74
• 74 cycles	Pass 085	18.2	3.3	18.8	3.4	+0.6cm
No tide nor dynamical atmospheric corrections	Pass 222 (P2)	16.7	2.5	17.7	2.5	+1.0cm
	Pass 009 (P1)	14.8	3.3	16.0	3.3	+1.2cm

→ From 64 to 74 cycles: increase in the mean bias, due to changes in the MSS profiles (more cycles, stabilization of the mean profiles)

→ Decrease in the bias of about 3cm between the coast (pass 085) and the offshore altimetry data (pass 009): Ocean dynamics differential effects ? Stability of the MSS profile used to compute the bias ?

M2 amplitude - GOT00.2

Tide effect: 2 tide model corrections available in the GDR-C products: FES2004 and GOT00.2

· Harmonic analysis on the tide gauge data (66 waves)

Weighted bias (cm)	Jason-2 – 64 cycles GOT00.2 tide correction		Jason-2 – 64 cycles FES2004 tide correction		
	Mean	Std	Mean	Std	
Pass 085	18.2	3.5	18.0	3.6	
Pass 222	16.8	2.8	16.8	2.9	
Pass 009	14.9	3.7	14.7	3.7	

Fig.1: Amplitude and phase of the GOT00.2 M2 wave in the area of the Senetosa calibration site. The red dots superimposed represent the Jason-2 altimeter point position

→ Low amplitudes (9cm) and homogeneous phases (difference of about 5° between the offshore pass and the Senetosa site)

→ No clear impact of the tide correction on the off-shore bias

Dynamical atmospheric effects:

Weighted bias (cm)	Jason-2 cycles 1 to 64 with TUGO dynamical correction		
	Mean	Std	
Pass 085	18.1	3.1	
Pass 222	16.5	2.5	
Pass 009	15.3	3.6	

• TUGO global simulation for both altimetry and tide gauge data

explain the gap between the offshore and coastal biases → Would a regional correction better see the

offshore dynamics ?

Regional method

Computation of the bias on off-shore passes, at crossover points:

- → considering passes of the same mission
- → combining several missions

It transports the offshore SSH to the calibration site following a succession of accurate MSS profiles in order to take into account the spatial MSS gradient between the offshore crossover point and the calibration site.

The ocean dynamics (circulation, tides and atmospheric effects) differential signal between the offshore passes and the coast also influences the bias estimation.

CONCLUSIONS Decrease in the bias between the coast and the offshore passes for both Jason-2 and Jason-1 missions (on the original and interleaved orbits) - Not seen in the Jason-1 GDR-A products.

Weak impact of the tide and dynamical atmospheric corrections on the bias in this region.

Would be interesting to use the same regional method on other in situ Calval sites in order to understand these results

These studies were carried out in the frame of a SALP project supported by CNES and the CORSAIR project funded by ESA

The ENVISAT data used in this study were developed, validated, and distributed by the CTOH/LEGOS, France

Jason-1 altimeter biases in Senetosa