

# WASHINGTON Errors in Estimating River Discharge from Remote Sensing based on Manning's Equation

Elizabeth A. Clark<sup>1</sup>, Michael Durand<sup>2,3</sup>, Delwyn K. Moller<sup>4</sup>, Konstantinos M. Andreadis<sup>3</sup>, Sylvain Biancamaria<sup>1,6</sup>, Doug Alsdorf<sup>2,3,5</sup>, Dennis P. Lettenmaier<sup>1</sup>, Nelly Mognard<sup>6,7</sup> <sup>1</sup>Civil and Environmental Engineering, University of Washington, USA; <sup>2</sup>School of Earth Sciences, The Ohio State University, USA; <sup>3</sup>Byrd Polar Research Center, OSU, USA; <sup>4</sup>Remote Sensing Solutions, Inc., USA; <sup>5</sup>The Climate, Water & Carbon Program, OSU, USA; <sup>6</sup>Université de Toulouse, UPS (OMP-PCA) LEGOS, France; <sup>7</sup>CNES/LEGOS, France

### **Overview**

- The Surface Water and Ocean Topography satellite mission will provide unprecedented mapping of water surface heights, slopes, areal extent, and their changes in time.
- The purpose of this study is to assess the accuracy of indirect streamflow estimates that would likely result from applying SWOT-based measurements in a simple slope-area approach (Manning's equation). • The slope-area method is considered a first-order method and was developed for use with ground-based observations. SWOT will contribute additional spatial information that is expected to improve these estimates.

### **Test Data: In Situ Reach-Averaged Observations**

| Reach-<br>average<br>Value                                       | Mean   | Standard<br>Deviation | Minimum  | Maximum | <b>Figure 2.</b> Distributions<br>characteristics for<br>rivers used in this | s of hydraulic                            |
|------------------------------------------------------------------|--------|-----------------------|----------|---------|------------------------------------------------------------------------------|-------------------------------------------|
| $Q (m^3/s)$                                                      | 1083   | 9056                  | 0.01     | 283170  | Study, excluding the                                                         |                                           |
| w (m)                                                            | 131    | 193                   | 2.9      | 3870    | Amazon River.                                                                | 0 10 20 3<br>Discharge (1000 m            |
| z (m)                                                            | 2.39   | 2.36                  | 0.10     | 33.00   | <b>S</b> 100 %                                                               |                                           |
| S                                                                | 0.0026 | 0.0052                | 0.000013 | 0.0418  | anba 50 % -                                                                  | 20 %                                      |
| n                                                                | 0.034  | 0.046                 | 0.008    | 0.664   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                        | $\frac{5}{4}$ 0 % $\frac{100}{0}$ 500 100 |
| <b>Fable 2.</b> Summary statistics for 1038 in situ observations |        |                       |          |         | Water Surface Slope (m/n                                                     | n) Width (m)                              |





inst

| trument             |               |
|---------------------|---------------|
|                     | Measurement   |
|                     | Water surface |
| bla 1 Paquiraments  | height        |
| for the accuracy of | Water surface |
| SWOT maggiromonta   | slone         |

(Rodríguez, 2

♦ Ka-band Radar Interferometry (KaRIN).

- 2 60-km wide swaths.
- all rivers, lakes, reservoirs observed
- properties to a high degree of accuracy (Table 1).

| ments<br>acy of<br>ments<br>2009). | Measurement                   | Required accuracy $(1\sigma)$ |                                                           |  |
|------------------------------------|-------------------------------|-------------------------------|-----------------------------------------------------------|--|
|                                    | Water surface<br>height       | 10 cm                         | Averaged over 1 km <sup>2</sup><br>area within river mask |  |
|                                    | Water surface<br>slope        | 1 cm/<br>km                   | Over 10 km<br>downstream distance<br>inside river mask    |  |
|                                    | Water surface<br>areal extent | 20%                           | For all rivers at least<br>100 m wide                     |  |

of streamflow and coincident hydraulic properties on 103  $\xi^{100\%}$ river reaches used for testing the error propagation. The largest river included is the Amazon River. Compiled by Bjerklie et al. (2003).

 $E[Q(n,w,z,s)] \approx Q(E[n],E[w],E[z],E[s])$  $\therefore Var[Q] \approx ACA^{T}$ where A =

 $\partial W$ dn

 $25(\sigma_{z_0}^2 + 2\sigma_h^2)$  $\sigma_{Q}$ 

Figure 3. First order uncertainty assuming independent errors, as in Eqn. 6, based on 1038 observations, binned by width. An ideal case of  $\sigma_n = 0.1 * n$  is used in the part







- to 30 ms, respectively. 10 m was the minimum bias due to pixel size. ▲ *Initial water depth*: Durand et al. (2010) proposed an algorithm to extract an "initial" water depth based on the kinematic and continuity assumptions applied to Manning's equation. For a test case on the Cumberland River in Ohio, the relative error in depth had a mean of 4.2% and a standard deviation of 11.2%.
- *Roughness*: This is our friction factor. A number of regression schemes have been proposed to estimate this quantity from observations. We have tested these regressions with in situ observations (described in next) section) and found that mean errors were  $\sim 10\%$  with 20-30% standard deviation. In the Monte Carlo analysis, we use Dingman & Sharma's 1997 regression: n=0.217w<sup>-0.173</sup>z<sup>0.094</sup>S<sup>0.156</sup>

Workshop: Towards High-Resolution of Ocean Dynamics and Terrestrial Surface Waters from Space 21-22 October 2010, Lisbon, Portugal



### **Figure 6**. Comparison of results from Monte Carlo with only errors in slope, h, and bathymetry depending on assumed $z_0$ .

## Conclusions

- For the base case of Manning's equation for 1-D channel flow, instantaneous discharge can be estimated with accuracies at or near 20% for most rivers wider than 100 m, assuming an improved estimation of n.
- Instantaneous discharge errors in this approach are highly sensitive to errors in total water depth. Estimating depth around low flows would help to limit these errors.
- This analysis depends strongly on the knowledge of error standard deviation and covariance. Additional work is needed to verify and improve estimates of the magnitude of these terms.
- In situ observational errors and the implications of knowledge of spatial extent during times of overbank flow should be considered in future work.
- Future efforts should seek to better understand the correlations between variables. Spatial and temporal sampling combined with continuity and other hydrodynamic assumptions should provide additional constraints not considered here.