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Measurement Required accuracy (1σ) 
Water surface 
height 

10 cm Averaged over 1 km2 
area within river mask 

Water surface 
slope 

1 cm/
km 

Over 10 km 
downstream distance 
inside river mask 

Water surface 
areal extent 

20% For all rivers at least 
100 m wide 

Surface Water and Ocean Topography Mission 

Overview 

Estimation of Streamflow: Manning’s Equation 

Test Data: In Situ Reach-Averaged Observations 
Reach-
average 
Value 

Mean Standard 
Deviation 

Minimum Maximum 

Q (m3/s) 1083 9056 0.01 283170 
w (m) 131 193 2.9 3870 
z (m) 2.39 2.36 0.10 33.00 
S 0.0026 0.0052 0.000013 0.0418 
n 0.034 0.046 0.008 0.664 

First Order Uncertainty Analysis 

Monte Carlo Estimates of Error 

 Manning’s Equation 

 Assuming rectangular cross-
section and width >> depth 

  In terms of SWOT observables 

 Assuming uniform flow, 
   S = friction slope ~ water  
         surface slope 
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Q = discharge (m3/s) 
n = Manning’s roughness coefficient 
A = cross-sectional area of channel (m2) 
R = hydraulic radius = A/P (m) 
P = wetted perimeter (m) 
w = width (m) 
z = water depth (m) 
z0 = water depth at some arbitrary  
   “initial” time (m) 
dz = h – h0 (m) 
h = water elevation at current    
    observation time (m) 
h0 = water elevation corresponding  
    to z0 (m) 

 The Surface Water and Ocean Topography satellite mission will provide 
unprecedented mapping of water surface heights, slopes, areal extent, and 
their changes in time. 

 The purpose of this study is to assess the accuracy of indirect streamflow 
estimates that would likely result from applying SWOT-based 
measurements in a simple slope-area approach (Manning’s equation). 

 The slope-area method is considered a first-order method and was 
developed for use with ground-based observations. SWOT will contribute 
additional spatial information that is expected to improve these estimates. 

Conclusions 

Figure 1. Schematic of the SWOT 
instrument. 

Table 1. Requirements 
for the accuracy of 

SWOT measurements 
(Rodríguez, 2009).  

 Ka-band Radar Interferometry 
(KaRIN). 

 Look angles limited to less than 4.5°;
2 60-km wide swaths. 

 22-day repeat cycle, 78° inclination; 
all rivers, lakes, reservoirs observed 
at least twice every 22 days. 

 Will measure reach-averaged river 
properties to a high degree of 
accuracy (Table 1). 

Derived Quantities 
 Width: Moller and Rodríguez (2008) estimated errors in width resulting 

from water coherence time effects (due to wind and turbulence of the 
water surface). For their worst-case (temporal decorrelation time of 20 
ms), width errors (1σ) were roughly 5% over a 1 km long reach, and the 
mean width bias was between 75 and 10 m for coherence times from 4 
to 30 ms, respectively. 10 m was the minimum bias due to pixel size. 

  Initial water depth: Durand et al. (2010) proposed an algorithm to 
extract an “initial” water depth based on the kinematic and continuity 
assumptions applied to Manning’s equation. For a test case on the 
Cumberland River in Ohio, the relative error in depth had a mean of 
4.2% and a standard deviation of 11.2%. 

 Roughness: This is our friction factor. A number of regression schemes 
have been proposed to estimate this quantity from observations. We 
have tested these regressions with in situ observations (described in next 
section) and found that mean errors were ~10% with 20-30% standard 
deviation. In the Monte Carlo analysis, we use Dingman & Sharma’s 
1997 regression: n=0.217w-0.173z0.094S0.156  

Table 2. Summary statistics for 1038 in situ observations 
of streamflow and coincident hydraulic properties on 103 
river reaches used for testing the error propagation. The 
largest river included is the Amazon River. Compiled by 
Bjerklie et al. (2003). 

Figure 2. Distributions of hydraulic 
characteristics for  
rivers used in this  
Study, excluding the  
Amazon River. 

 Sperturbed = S + N(0,1e-5) 
  zperturbed = z + N(0,0.10 m) +N(0,0.1 m)+ z0*N

(0,0.11) 
 wperturbed = w + N(0,10 m) + w*N(0,0.07) 

 nperturbed calculated from other perturbed 
values using Dingman and Sharma (1997) 

Figure 6. Comparison of results from 
Monte Carlo with only errors in slope, h, 
and bathymetry depending on assumed z0. 

Figure 5. 1000 random perturbations to each 
observation were generated based on the 
distributions in box to right (with z0=0.5z), and Q 
was calculated by inserting these observations into 
Manning’s equation. Mean and standard deviation 
of relative error in Q were calculated from all 
1,038,000. Errors were progressively added from 
upper left to bottom right.  

We assume that Eqn. 3 can be linearized as follows: 
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E[Q(n,w,z,s)]≈Q(E[n],E[w],E[ z],E[ s]) (4)
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and C is the covariance matrix. 
If the terms are assumed to be independent, this becomes :
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Figure 4. First order uncertainty assuming 
a correlation of 1.0 between all terms in 
Eqn. 5, except that  errors in h0 and h were 
assumed independent.  

σs = 1e-5  σh = 0.10 m  σz0 = 0.11*z0 

Figure 3. First order uncertainty assuming independent 
errors, as in Eqn. 6, based on 1038 observations, binned 
by  width. An ideal case of σn = 0.1*n is used in the part 
c. 

Mean at 
black 

diamonds 

+/- 1 σ2 

in gray 
bar 

Remaining variance to keep 
error in Q below 20% 

Relative 
Q error
(%) 

 For the base case of Manning’s equation for 1-D channel flow, instantaneous discharge can be 
estimated with accuracies at or near 20% for most rivers wider than 100 m, assuming an 
improved estimation of n.  

  Instantaneous discharge errors in this approach are highly sensitive to errors in total water 
depth. Estimating depth around low flows would help to limit these errors. 

 This analysis depends strongly on the knowledge of error standard deviation and covariance. 
Additional work is needed to verify and improve estimates of the magnitude of these terms. 

  In situ observational errors and the implications of knowledge of spatial extent during times of 
overbank flow should be considered in future work. 

 Future efforts should seek to better understand the correlations between variables. Spatial and 
temporal sampling combined with continuity and other hydrodynamic assumptions should 
provide additional constraints not considered here. 

S, h, and z0 errors 

S and  h errors 

S and  h errors 

S, h, and z0 errors 

S, h, z0, and n errors 

Remaining variance to keep 
error in Q below 20% 

(a) 

(b) 

(c) 

To get 20% uncertainty in Q: if n or w known 
perfectly, the other could have at most 17% 
error (right side b); for 10% error in n, w could 
have at most 14% error (right side c). 

S, h, and z0 errors S and  h errors 

S, h, z0, and w errors S, h, z0, w, and n errors 
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