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Figure 9. In a data assimilation system, we make some assumption about the unseen base�ow geometry. Here, we have as-
sumed a parabolic shape. �e parabola has a single parameter, the minimum channel elevation. We generated twenty di�er-
ent values of this minimum channel elevation at each cross-section, and calculated the resulting bathymetry (gray lines, 
above): this is referred to as the “prior ensemble” of bathymetry. We solved the energy conservation equation (Gradually 
Varied Flow equation) for each ensemble member (red lines, above). �ese water elevations can then be compared directly 
with the observed water elevations and top widths in order to calculate the optimal channel bathymetry. �e equation is 
used to �nd the optimal minimum depth (z) given observed and modeled water elevations (h) for each ensemble member 
(k) using the covariance matrices (C) between model inputs and outputs.

z+k = z−k + Czh (Chh + Cv)
−1 (

hobs − h−
k

)

Figure 10. Here we show the hydraulic depth, de�ned as the cross-sectional �ow area divided by the top width; this makes a 
fair comparison between cross-sections with di�erent shapes. In the areas near �ow control structures (near 0 km �ow dis-
tance and around 3 km �ow distance) depth estimates are poor. Upstream away from dam in�uence (greater than 4 km �ow 
distance) the posterior hydraulic depth captures the true variability.

Figure 8.(right) �e HEC-RAS output was used to 
derive the at-a-station hydraulic geometry at each 
station in the model. Results from two stations are 
shown. �e top station has channel �ow only, while 
the bottom station has signi�cant out-of-bank �ow. 
Note that the cross-sectional area still follows a 
power law for the bottom cross-section.

Figure 7.(above) �e at-a-station hydraulic geometry 
is a tool that has been used for decades to study �uvial 
systems, beginning with Leopold and Maddock 
(1953). Power laws are used to represent the relation-
ships between discharge and  width, depth, and veloc-
ity. By noting height, slope, and top width variability, 
information can be extracted about base�ow depth.
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Figure 5. �e HEC-RAS model was used to predict 
water elevations given the bathymetry and the �owrate 
(steady state simulation). �e so�ware includes the ef-
fects of dams and levees on �ow hydraulics.

Figure 6. We calculated water surface elevation pro-
�les at ten di�erent �owrates, corresponding to di�er-
ent fractions of the 100-year �ow. At each cross-
section, the water elevation, top width, water slope, as 
well as total depth was predicted.

Figure 3. Our study area 
for testing these method-
ologies is the Rio Grande 
River, in the 180 km up-
stream of the American 
Dam and downstream of 
the Caballo Dam. �is is a 
heavily managed river in a 
semi-arid region.

Figure 4. In an independent study, cross-section 
measurements were made at hundreds of cross-
sections along the river. Instream bathymetry was 
measured via a small boat, and �oodplain bathym-
etry was measured via Lidar. �ese bathymetry 
measurements were interpolated in space such 
that a cross-section exists approximately every 150 
m, for a total of 1202 cross-sections in the reach.

Figure 1. �e Surface Water and Ocean To-
pography (SWOT) mission will measure in-
undated area and water elevation (h) for 
inland water surfaces, from which water 
slope (∂h/∂x) and temporal change  (∂h/∂t) 
are derived. From these fundamental mea-
surements, surface water storage change and 
river discharge will be calculated, two princi-
pal components of the water cycle.  SWOT 
has been recommended by the Deacadal 
Survey (Alsdorf et al., 2007); probable launch 
date is 2019. A key technology of the SWOT 
mission is a Ka-band Radar INterferometer 
(KaRIN) which is a near-nadir viewing, 120 
km wideswath based instrument that uses 
interferometric SAR processing of the re-
turned pulses to yield single-look 5m azi-
muth and 10m to 70m range resolution, with 
an elevation accuracy of approximately 50 
cm. Figure from Durand et al. (2010). 
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Figure 2. SWOT) will deliver measurements of storage change in rivers and lakes and of river dis-
charge. River discharge as calculated, e.g., by the Manning equation is dependent on the total depth of 
�ow. �e �gure illustrates an irregular cross-section (black line) at di�erent water elevations (i=1, 2, ... 
n) measured by SWOT. While SWOT will readily observe these changes in water elevation or depth (∂
h/∂t), the base�ow depth will not be observed. Nonetheless, hydraulic information in the water slope 
and (∂h/∂x) and changes in top width can be utilized with the hydraulic constraints imposed by mass 
and momentum conservation in the context of a data assimilation scheme to constrain the base�ow 
depth. Moreover, the principles of at-a-station hydraulic geometry can also be utilized to provide in-
formation on base�ow depth. �is project investigates these two methods of estimating depth.
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