

NEAR-REAL-TIME DORIS-ONLY GROUND ORBITS

S. Houry¹, S. Rios-Bergantinos², L. Cerri¹, A. Couhert¹, F. Mercier¹

¹CNES, Toulouse, France

²CS, Toulouse, France

Short-latency DORIS-based Jason-2 orbits have been routinely produced on a best-effort basis with an accuracy similar to that of MOE orbits used in IGDR products, but with a delay compatible with the OGDR processing needs. We evaluate the accuracy of these orbits over different time-spans by comparison with independent GPS-based precise orbits.

Introduction

This exercise aimed at verifying the robustness of an **MOE-like orbit solution in** a near-real time scenario, on a best-effort basis (with no operational constraints). Is the "Rapid MOE" accuracy equivalent to that of the current MOE with a latency compatible with the OGDR production?

	D-2	D-1	D	D+1		
56 hr DORIS BATCH MOE D-2						Standard MOE processing scheme:
56 hr DORIS BATCH MOE D-1						56 hours batch : [D-2 00:00 , D 08:00]
56 hr DORIS BATCH MOE D						26 hours delivered ephemeris : [D-2 22:00 , D 00:00]
48 hr DOR 48 hr DC 48 hr 48 hr	IS BATCH RMOE D-1 nr0 DRIS BATCH MMOE D-1 nr DORIS BATCH RMOE D-1 nr DORIS BATCH RMOE D	CEXTRAPCO CEXTRAPCO 1 COEXTRAPC 1 m3 COEXTRA	Each Flow Nour In R SSA SSA	n available D((generally e rs) has been INEX format ILTO ground ecially for thi	DRIS data very two delivered by segment is test	Rapid MOE processing scheme: based on the last Doris measurement epoch (t ₀) 48 hours batch : [t ₀ -48hr , t ₀] 24 hours delivered ephemeris : [t ₀ -24 hr , t ₀] 24 hours delivered extrapolation : [t ₀ , t ₀ +24hr]

Availability, latency and accuracy

12% of rapid MOEs not available, corresponding to a total of 112 anomalies

- 2 anomalies due to the interruption of MOE processing (non-operational machines)

- 110 due to missing RINEX data

When available, rapid MOE has been delivered

-within 2 hr 80 % of times

-within 4 hr 19 % of times

-after more than 4 hr 1 % of times

All delays are explained by late RINEX arrival

Radial accuracy is evaluated by comparison with respect to GPS POE (CNES), assumed to have a 1-cm radial accuracy

Radial difference is generally below 2 cm RMS over the 48 hr batch interval and below 3 cm RMS over the last two hours.

Similar level of agreement has been shown for the standard MOE solution.

Conclusions

This test demonstrates that a DORIS-only MOE-like processing scheme is sufficiently robust to achieve the typical IGDR orbit radial accuracy in a near-real time scenario.

Depending on user needs, specific tuning could improve the stability of the performance over the last two hours of the batch.

