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Quality of precise orbit ephemerides is crucial for quality of altimeter data
products and the studies based upon these data. Inversely, studies using Sea
Surface Height (SSH) calculation from altimeter data or insitu data give insight
in orbit quality for the different missions, help to compare different orbit
solutions for one mission, and help to give hints which mission is impacted by
suspicious behavior, when comparing several missions.

Hereafter, we present the main results from analyses concerning:
* the impact of using different orbit solutions on the Jason-2 SSH performances

* the detection of a strong East/West MSL drift between the Jason-1 and
Envisat

* the significant improvement on SSH calculation of using recent orbit solutions
for T/P and GFO

« impact of ITRF 2005/2008 on Jason-2 SSH performances

Method

Orbit performance can be accessed via SSH (orbit - range - geophysical corrections) computation at mono- or
dual-satellite crossover points, but also comparing to independent in-situ data sets, such as tide gauges or
temperature/ salinity profiles.

Mono- or dual satellite crossovers: Choosing ascending/descending crossovers within a 10 days period, allows to
limit influence of geophysical evolution of the ocean (except for regions with high oceanic variability).

Cartography of mean SSH asc/desc differences at crossovers should only show noise, and no geographically
correlated patterns (indicating systematic differences between ascending and descending passes). Cyclic mean
and standard deviation of asc/desc SSH differences are computed in order to perform long-term monitoring.

Along-track Sea Level Anomaly (SLA) analysis: Along-track SLA is used to compute global and local Mean Sea
Level (MSL) trends, which are compared between the different altimeter missions and insitu data.

Comparison with insitu data: Tide gauges (mostly near coasts) and temperature/ salinity profils (almost global
coverage) are an independent source of data. From them, an insitu SSH can be computed and compared to
altimetry data.

Impact of several Jason-2 orbit solutions on performances at SSH
crossovers

POE orbit solution from several productions centers (CNES, JPL, GSFC), using different
technics, are tested for Jason-2 data. Figure 1 shows maps of SSH differences at crossovers
for different orbit solutions.
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Fig. 1: Maps of SSH differences at crossovers for several orbit solutions.

Official POE solution from GDR shows an 120 day signal (related to p' angle), which is increased
for CNES GPS orbits, and strongly reduced for JPLO9a. Reduced dynamic solutions reduce
generally variance at crossovers.
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Fig. 2: Monitoring of cyclic mean Maps of SSH differences at crossovers for several orbit solutions.

Orbit solutions show similar performances, but GPS JPLO9a is the best one: geographically
more homogeneous (at crossovers), less impacted by 120 days signal, and has less rms at
crossovers.

Improvement on SSH calculation using last orbit solutions for
Topex/Poseidon and Geosat Follow-On

Historical altimeter missions, like Topex/Poseidon or Geosat-Follow-On (GFO) are not yet
reprocessed and their level-2 altimeter products contain still orbit solutions based on JGM3
gravity model. Cartography of SSH ascending/descending crossover differences show trackiness
and large signatures of +/- 3 cm amplitude (fig. 3). Using orbit solutions with gravity fields
based on GRACE measurements, such as GSFC Std0809 orbit (Lemoine et al., 2008), reduces
significantly trackiness (fig. 4) and reveals geographical correlated signal on GFO.

Fig. 3: Cross-over
mean differences
using original orbit
solutions for GFO
cycles 045 to 114
(left) and
Topex/Poseidon
cycles 11 to 446
(right).
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Fig. 4: Cross-over
mean differences
using GSFC
STDO809 orbit for
GFO cycles 045 to
114 (left) and
Topex/Poseidon
cycles 11 to 446
(right).
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Recent orbit solutions based on Eigen4 gravity model improve significantly SSH
performances, remaining geographically correlated patterns need to be analysed,
especially on GFO.

Detection of Est-West drift in local MSL maps between Jason-1
and Envisat

Computing local Mean Sea Level (MSL) trend maps for Jason-1 and Envisat and substucting one
map from the other reveals a strong east-west signal. I+s amplitude is dependant on longitude.

Yearly dual-crossover maps between Jason-1
and Envisat show an increase of East/West
bias, especially since 2007 (cf. talk Y. Faugere).
Can this be related to gravity field ?

Comparing SLA from altimeter and T/S profils
separated in eastern and western hemisphere
(fig. 6) confirm a drift between East and West
for Envisat, whereas it is much less pronounced
for Jason-1 (inside errors of the method).
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Fig. 5: Difference of MSL trend (Jason-1 - Envisat). Top:
map, bottom: as function of longitude.

East/West signal is likely due to the Envisat orbit calculation.

Fig. 6: Difference between altimeter data and T/S profils, separated
in eastern and western hemisphere. Left: Envisat, right:Jason-1.

Assessing impact of ITRF 2005/2008

In the frame of ITRF2008 analysis, CNES has produced two series -}, ,
of Doris/Laser orbits for Jason-1 and Jason-2: one with ITRF2005 .1
and one with ITRF2008. Altimeter data are used in order to assess “§

impact of ITRF version change. '

ITRF

Jason-2 Doris/SLR 2005 and 2008 1-70
Doris/SLR 2005 and 2008 1-20,100-120,200-220,300-310

Jason-1

Mean of differences over ~70 cycles (fig. 7) shows typical
hemispheric bias, which is more pronounced for Jason-2. Both
ITRF versions show similar performances of SSH asc/desc
differences at crossovers (variance of SSH difference is almost
the same for ITRF2008 and ITRF2005, fig. 8).
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Fig. 7: Maps of orbit differences

(ITRF2008 - ITRF2005) averaged over
70 cycles Jason-1 (top) and Jason-2

shows an annual signal of +/-1 cm2 amplitude. (bottom).
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Using ITRF2008 orbit solution, instead
of ITRF2005, has neither impact on
global MSL trend, nor when separating
in North/South hemisphere (fig. 9,
bottom).
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Over the studied period, changing to ITRF2008 solution, will only have a limited impact
on SSH performances and global MSL trends

Using altimeter and insitu data, allows to analyze orbit solutions and to detect potential
problems as the east/west drift detected in Envisat MSL, assess quality of orbit solutions, and
study impact of modifications in orbit solutions
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