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Summary
In order to forecast the evolution of a dynamical system such as gophisical fluids (ocean, atmosphere, continental waters), all

the available information have to be accounted for. They are of very different nature : set of non linear PDE (mathematical-type
information), in situ measurements and remote sensing (physical-type information), statistical and qualitative informations.
The forecast is produced through a model integration starting from an initial state, from which the system evolution is very
sensitive. Consequently, the issue is to evaluate the initial state in a consistent manner from all this heterogeneous sources of
information. At the beginning of the 80s, techniques coming from the optimal control theory were proposed to achieve this task.
These techniques are now adopted by the main numerical weather forecast centres.
For few decades, a large number satellites dedicated to earth observation has been launched, in order the improve our knowledge of
the atmosphere and the oceans. They provide, among other things, numerous sequences of images. These sequences clearly have
a strong predictive potential due to the fact that they contain information about the dynamics of the observed system. Currently,
this kind of information is unfortunately not used in an optimal manner in conjunction with the numerical models.
This poster presents an extension of the optimal control based techniques to the assimilation of images. A quadratic term measuring
the misfit between the images equivalent produced by the model and the observed images is introduced in the usual cost function.

Motivations

Under used, the satellite image sequences have a strong predictive potential: Dynamic evolution of structures
from Katrina
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Evolution of a dry intrusion in a sequence of MeTeOSAT (water vapour canal): from a simple anomaly to
cyclogenesis
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Image sequences contain:

a large amount of high resolution information,

structured informations about the dynamics of the observed systems,

extreme event precursors.

Variational assimilation of image sequences

’Classical’ data assimilation

Ingredients

Model


∂x

∂t
= F (x) , t ∈ [0, T ] (F : Partial Derivative Operator)

x(0) = x0 , Initial state

→ Numerical model: discretized in space and time (ti)
N
i=0

Mi(x0) : approximation to the PDE solution at time ti; with x0 being the initial state

Observations: mesures of the state of the system yo areavailable

Observation operator H ∈ Rp×n: from the state variable spate to the observations space.

misfit to the observations : yo(ti)−H[Mi(x0)]

statistics: some statistical information represented by the background and observation error covariance matrices are available.

background error covariance matrix B; background xb is an a priori estimate of x0 (from climatologe or a previous forecast)

observation error covariance matrix: R

Data assimilation

combine in a consistant manner all the available information about the system during a [0, TN ] window in order to get an analysed
optimal inital state xa that minimizes the cost function

J(x0) =

N∑
i=0

‖yoi −H[Mi(x0)]‖2O + ‖x0 − xb‖2X

‖x‖X =Tx B−1 x : State variable space metric

‖x‖O =Tx R−1 x : Observation space metric

Minimization: computation of the cost function’s gradient ∇x0J . through the resolution of the adjoint equations:
dp

dt
+

[
∂F

∂x

]T
.p =

[
∂H
∂x

]T
[H[x]− y]

P (T ) = 0

∇x0J = −P (0) + x− x0

(Le Dimet, 1980), (Lewis and Derber, 1985), (Le Dimet et Talagrand, 1986)

Image Sequence Assimilation

Challenge

Define appropriates observation operator and measure of the misfit.

Properties of images et image sequences

Indirect observations of the system state (radiances in the case of satellite images)

Pertinent dynamical information localized on singularities
→ The misfit to the observation cannot be computed the same way as standard observation.

Proposition

Define an appropriate space for the computation of the misfit to images.

Define the appropriate functions mapping the space of model output (resp. the space of image observations) to the above
mentionned state.

New cost function

J(x0) =

∫ T

0
‖y −H[Mt(x0)]‖2Odt︸ ︷︷ ︸
Classical term Jo

+

∫ T

0
‖HV→S [v]︸ ︷︷ ︸−HX→S [Mt(x0)]︸ ︷︷ ︸‖2Sdt + ‖x0 − xb‖2X

S : Misfit to observation space.

HV→S Image operator (e.g. multi-scale transformation)

HX→S Image observation operator. Two possible ways:

∗HX→S = HV→S ◦ HX→V : synthetic images are produced from model output (operator HX→V)

∗Define directly HX→S (work in progress . . . )

Control parameters
(Initial state ...)

xa ∈ Rn

Model
M

Simulation/
Forecast
xf ∈ Rn

Optimality
System

A
nalyzed

State A priori
Knowledges
B ∈ Rn×n

R ∈ Rp×p

Physical
observations

yi ∈ Rp

Image
Sequences
f i ∈ Rh×l

Image Operator

HV→S(v) = Threshold of the image v Curvelet Transform

multi-scale multi-orientation transform

Decomposition in the curvelet frame: v =
∑
j,k,l

〈v, ϕj,l,k〉ϕj,l,k

j : scale index
l : orientation index (j dependent)
k : position index (j and l dependent)

Threshold : v̂m =
∑

(j,k,l)∈E

〈v, ϕj,l,k〉ϕj,l,k # E = m (work in progress . . . )

Curvlet principle: scaling, rotating
and translating

spectral
partition
of the
frequency
plan

Wavelets Curvlets

‖v − v̂m‖ ≈ m−1 ‖v − v̂m‖ ≈ Cm−2(logm)3

The curvlet transform is well suited for the compact representation of 2D singularities
This allows to reduce drastically the size of the observation space (spce where the misfit to the observation
is computed)
→ speed-up the convergence of the minimization algorithm.

To a given precision, the curvlet transform requires less coefficients than a wavelet transform for representing
a given curve (2D singularities).

Fast Discrete Curvelet Transform (FDCT) : requires O(n2 log n) operations for a n × n image
(www.curvelet.org)

(E. J. Candès and D. L. Donoho, 2004), (L. Demanet 2006)

Numerical Experiment : Vortex evolution

Experiments and simulation

Experimentation J.-B. Flór (LEGI) and I. Eames, 2002

Plateforme Coriolis, LEGI, Grenoble isolated vortex

Numerical Simulation

Shallow water model, Passive Tracer Advection

Model and Operators State Vector x = (u, v, h) ; Shallow-water model
∂tu− u∂xu + v∂yu− fv + g∂xh +D(u) = Fu
∂tv + u∂xv + v∂yv + fu + g∂yh +D(v) = Fv
∂th + ∂x(hu) + ∂y(hv) = 0

’Image’ operator: HV→S[v] = threshold of the FDCT[v] = T (FDCT[v])
’Model to images’ operator (synthetic image) : HX→V[u, v, h] = q
where q(t) = q(x, y, t) is the passive tracer concentration transported by the velocity field and verifying
∂tq + u∂xq + v∂yq − νT∆q = 0
Observation operator: HX→S = HV→S ◦ HX→V = threshold of FDCT[q] = T (FDCT[q])

Cost function: J(x0) =
∫ T

0 ‖T (FDCT [v])− T (FDCT [q])‖2
Sdt + ‖x0 − xb‖2

X

Twin experiments

t = 24h.

t = 12h.

t = 00h.
Vérité analyse

True initial
velocity

Analysed true
velocity

Angular error RMS error

Real-data experiment

t = 0h t = 3h t = 6h
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