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Abstract

The shape of the wavenumber spectrum of sea surfabeight is controlled by a dynamic equilibrium of the energy of ocean circulation. The existence of ainersal wavenumber spectral slope in the
mesoscale band is a fundamental prediction of the reescale turbulence theories. Here we show that theest global survey of the wavenumber spectra of sesurface height from the Jason-1 satellite
observations has revealed complex spatial varialbi and significant departure from the predictions d existing theories over many parts of the world’ceans. There is no place in the ocean where the
wavenumber spectral slope obeys thekpower law of the traditional classical quasi-geostphic (QG) turbulence theory. Near the edge of theare regions of high eddy energy, agreement is obsed with
the k-113 power law of the surface quasi-geostrophic (SQG) ttmulence theory. However, the observations in theagt ocean interior of low eddy energy exhibit substdial differences from the predictions of
existing theories of oceanic mesoscale turbulencehdse surprising results have shed light on the linations of the existing turbulence theories and thefore, their predictions of the energy cascade phtvay
from large scale forcing to small scale dissipatiqrwhich is critical for the understanding of oceammixing, the ocean’s meridional overturning circulation, and the global climate variability.

OceanMesoscalelurbulence and Theoretical Predictions
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Ocean energy balance: spectral perspective
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