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Abstract
The upcoming Surface Water and Ocean Topography (SWOT) mission is a swath mapping radar interferometer that
will measure water surface elevation (WSE) and its temporal variability (dh/dt) and spatial variability (dh/dx).
However, because the SWOT satellite will measure changing elevations of the water surface, not the true depth to
river bottom, the river discharge cannot be estimated without ancillary data, namely the river channel bathymetry.
We have measurements of WSE and need to estimate water depth or bathymetry and discharge. In this paper, we
focus on retrieving bathymetry for estimating river discharge from SWOT measurements. Since the SWOT satellite
will be launched during the 2019-2020 time frame, we generated synthetic SWOT WSE measurements for the main
stem of the Ohio River. For the measurements, we simulated the true hydraulics parameters using the LISFLOOD-
FP hydrodynamic model and corrupted the results by adding spatially-correlated height errors based on the SWOT
instrument design. The Ensemble Kalman Filter (EnKF) was used to estimate the bathymetry, given the SWOT WSE
measurements and WSE predictions by the LISFLOOD-FP. The experiments showed that the EnKF update was
able to recover the bathymetry from WSE measurements with 0.16 m reach-average accuracy, which is 89.9% less
than the initial guess. The experiments also confirmed the usefulness of a multi-temporal data set for retrieving
bathymetry.

Methods

The SWOT mission, which is wide-swath interferometric altimetry data, will provide mesoscale oceanography data
and inland water surface elevation (WSE) data (i.e., river, lakes, wetland, and reservoirs). A joint project between
NASA and CNES, the SWOT mission has a planned launch date of 2019.

Figure 1. The core technology for SWOT is a Ka-band Radar
INterferometer (KaRIN), a near-nadir viewing, 120 km wide
swath-based instrument that uses interferometric SAR
processing of the returned radar pulses to yield single-look 5 m
azimuth and 10 to 70 m range resolution, with a worst-case
elevation accuracy of approximately 50 cm for 50 m pixels.

SWOT Mission

1. Simulate true hydraulic parameters using Hydrodynamic model

Figure 2. True hydraulic parameters of the Ohio River (January 1 - June 30, 2005) were simulated using the
LISFLOOD-FP model (Bates and De Roo, 2000). Modeled discharge at the downstream model outlet is shown
(blue), as well as the discharge from the USGS gage (green) (left). The estimates of the bathymetry and WSE are
shown (right). The model discharge clearly matches the observed discharge with an absolute relative mean error of
6.05% and a correlation coefficient of 0.93. The data were used to generate synthetic SWOT data and to evaluate
results.

2. Generate synthetic SWOT WSE measurements
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The SWOT WSE measurements were calculated as the sum of the true WSE (see Figure 2) and random height
errors based on the SWOT instrument design. In this study, we make the very conservation assumption that the
SWOT spatial resolution in both along-track and cross-track will be approximately 50 m. Height accuracies of the
SWOT measurement were also assumed as 0.5 m for an individual pixel (Alsdorf et al., 2007). In addition, we
also considered the SWOT temporal sampling using a 140 km swath for a 78° orbit inclination (Figure 3).

3. Ensemble Kalman Filter (EnKF)
Assumptions for the EnKF include:
o Unknown parameters: Bathymetry (z) and Discharge (Q)
o Known parameters: Channel width (w) and WSE (h) from SWOT and roughness (n) from ancillary data
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Figure 3. Representative SWOT measurements swaths
from 22 days and 78° orbit inclination are shown.

Figure 4. The number of times each of the 2657
model pixels is measured in 22 days (main stem
of the Ohio River) with a 78° orbit inclination is
shown.3.1.  Initial guess for unknown parameters

Figure 5. Ensembles of 20 possible bathymetries
are shown. We modeled bathymetry errors as
being spatially-correlated, following an exponential
correlation function with a correlation length of 100
km. Errors were modeled as being additive, with
zero mean, and a standard deviation of 2.5 m.

3.1.1.  Bathymetry 3.1.2. Discharge

Figure 6. Ensembles of 20 possible discharges
of main (top left) and 11 major tributaries
(arranged in order of location from upstream to
downstream) are shown.

For the flow, we estimated the true coefficients
of the power law relationship between
discharge and WSE. We then corrupted the
results by adding 10% random noise. Based on
these simulated coefficients, we generated the
20 possible discharges of each tributary.

3.2. Simultaneous state-parameter estimation with EnKF
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2Figure 7. Graphs show the EnKF update results
(bathymetry) of each cycle (1 cycle = 22 days). After
performing each EnKF update, the errors were clearly
reduced.

Figure 9. Posterior (blue) water depth estimates on April 2,
2005 are shown, as well as the truth (red). The reach-average
error for the posterior estimates was 0.19 m.

Figure 8. Graph shows the reach-average error of each cycle
after the EnKF processing. The errors were reduced at each
EnKF update and converged to approximately 0.16 m.

Results
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