
5.1. Conclusions on RM Spectrum analysis

• Stochastic RM analysis is a useful tool for array testing based on the 
detection of prior errors (Le Hénaff & De Mey, ODyn, 2009)

• Approach provides a recursive way to prioritize array options given a library 
of ensemble members

• …and, potentially, as a way to hierarchize consistency checking of 
ensemble forecasts (work in progress), as part of stochastic model testing

• Easily set up online as part of an Ensemble filter, e.g. to study the impact 
of regime changes on array performance

• Impact analysis can be performed on unobserved variables via modal 
representers

• Limits

– Based on detection of forecast errors; controllability checking requires OSSEs

– Criterion is based on Gaussian pdfs (like most DA schemes)

– No support yet for systematic errors (biases)

• Complementary with other existing array design approaches: OSSEs, 
targeted observations, etc.

5.2. Outlook: Can array modes help ensemble consistency
analyses? 
(Work in progress!)
• Problem: check whether probability densities of model forecast and 

observations are consistent with each other (be it visually, through 
reliability scores, Bayesian analysis, etc. – not the topic here)

– Compare pdf’s in data space vs. array space

• Low-order array-space forecast pd’s have broadest base (by design)

– Hierarchize ensemble consistency checks from easiest to hardest to pass

EW triplet, stationary/correlated AR process, 500 members

Data space pd p(H*x) Array space pd p(mu*H*x)

3.1. A simple problem

x augmented state vector (n,1) over time interval of interest 

(let me insist on the fact that this is an augmented state vector – everything that will be 

shown in this talk includes time as well as space in the definition of observations and 

prior state estimate) 

o
y  observations (p,1) verifying    to H xy , with: 

H( ) observation operator (not necessarily linear, but use linearized version) 

),0( RN  

 

Q: how can we characterize the performance of an array (H, R)? 

 

Assume we have a prior state estimate of x and associated error statistics (if not, any 

observational array will bring valuable information proportionately to its cost): 

 tf
xx , with: 

),0( fN P  
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Preliminary comment 1: Data assimilation provides a useful 
theoretical framework for array design

• We know our models are wrong, but observations are not truth! 

– The transfer function of an instrument can critically depend on environmental 
factors (e.g. particle traps) or electronics

– The time response of an instrument can contain transients which can be 
impossible to identify as such (e.g. altimeter range trackers)

– Measurements do not always observe the same processes as the model (= 
representation errors)

– Measurement errors are often not well known (they contain drifts, biases, 
saturation, and their models are imperfect)

– Observation operators are sometimes complex engineering models by 
themselves (this is the case of most remote sensing data)

– Observation operators can be imperfect (e.g. in their handling of subgridscale
processes)

– Etc.

• In matching imperfect models with imperfect observations, data 
assimilation provides a useful theoretical framework

– Framework useful beyond assimilation proper – e.g. for array design

Preliminary comment 2: Array testing and model consistency
testing are interdependent

• One reasonable criterion for array design is to ensure a fair detection of 
model errors, for model validation & assimilation

• In turn, models which are meant to benefit from those observations must 
be realistic and provide estimates consistent with observations

• In theory, it would make sense to develop both components together

Array testing
Model validation

ad hoc arrays

Consistent models

3. Ensemble-based Representer Analysis

3.2. What information does the array bring in?

Incremental information brought in by the observations (on top of prior): 

Innovation vector     Hxyyyd  fogo H   

 

The 2nd-order statistics of d can be used to characterize the amount of discrepancy 

brought in by the observational array (on top of prior): 

TfT
HHPRdd  , with: 

Tf
HHP  Representer matrix : prior state error covariance in observational space 
Tf

HP  Matrix of representers : provide extrapolation from observational array 

 

 Representers contain information on how observations are able to detect prior state 

error, and constrain an “optimal” solution through extrapolation: 

- Extrapolation in space and time 

- Extrapolation across variables (in particular the unobserved ones: multivariate 

character) 
 

4.1. A qualitative/intuitive criterion of array performance

The 2nd-order statistics of innovation d can be used to characterize the amount of 

discrepancy brought in by the observational array on top of the prior state estimate: 

TfT
HHPRdd 

 

Qualitative/intuitive criterion of array performance: 

 R “dominates”  

 most of the discrepancies are attributable to observational error  

 observations are not very useful 

 Tf
HHP  “dominates” 

 most of the discrepancies are attributable to prior state errors  

 observations can be used to identify and correct prior state errors
 
 

 

4.2. Towards a formal criterion of array performance

Two paths (among others) to formalize the intuitive order relationship…  

 

Bennett’s “array modes” (e.g. Bennett et al., 1997): these are orthonormal rotation 

vectors  obtained by diagonalizing the representer matrix:  

TTf
βλβHHP   

 : observable degrees of freedom of the physical system for that configuration 

 : spectrum of RM, to be compared to the diagonal of R (obs. noise floor) 

 

Le Hénaff & De Mey (Le Hénaff et al., 2009): in the general case of non-

homogeneous, non-diagonal R, and observational samples scattered in time, space, and 

across variables, use spectrum  and array modes  of the scaled representer matrix : 
TTf

μσμRHHPRχ   2/12/1
 

 : spectrum of SRM, to be compared to the diagonal of I (obs. noise floor)  

Modal representers  μRHPρ
2/1 Tf

  = representers for the array modes 

4.3. Stochastic implementation of RM analysis
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We now have the following stochastic estimates: 

σ̂  = RM spectrum = squares of the singular values of S

μ̂   = Array Modes = singular vectors of S 

Modal Representers = 
μASρ ˆ

1

1
ˆ T

m
  

4.4. Stochastic RM spectrum analysis in practice

• RM analysis levels

– Just count eigenvalues above 1  useful to convince sponsors & decision-

makers

– Explore array modes & modal representers  scientific analysis

• Origin of ensemble samples 

– From stochastic modelling  array performance results do not depend on 

assimilation configuration and history (sometimes easier to sell)

– From an EnKF  online analysis allow to study array performance through 

regime changes, error estimates are typical of an assimilating system

• Assumptions on prior state error sources

– Choose to perturb wind stress, surface pressure, bathymetry, river runoff, 
turbulence (mesoscale, mixing), large-scale circulation, initial/boundary 
conditions, etc.

 Comes back to prioritizing what the array is designed for

Mode 2:
Meso1

Mode 3:
Meso2+HF

4.5. Wide-swath vs. nadir altimeter

• We compare the performance of the JASON nadir altimeter with SWOT on the 
JASON orbit

• Only SWOT appears able to usefully detect & constrain coastal mesoscale patterns 
(array modes 2 and 3) and high-frequency events on the shelf (array mode 3)

RM spectra

JASON

SWOT

First 3 detectable array modes (SLA)

41

SWOT vs. JASON-1
Mode 1:
Swing

(common)

Detectable range
(4 eigenvalues)

Colors =
EnKF iterations

4.6. Online RM spectrum analysis with 4-D local EnKF

• Same experimental configuration, but 
carry out RM analysis online at each 10-
day assim cycle (invariant H)

• 4-D local EnKF with BELUGA

• Assimilate simulated SWOT wide-swath 
altimeter on 10-day orbit for 2 months in 
summer 2004

• Rank is approximately conserved 
through assimilation

• Spectra whiten in detectable range

– Array info is being extracted

– Mostly large-scale and mesoscale error 
processes constrained

– No eigenvalue decrease for high-
frequency shelf processes  need for 

sustained observations of such processes

5. Conclusion and outlook

4. Array performance and design: RMSpectrum analysis

2. Modelling configuration1. Array testing with estimation methods

2.3. Ocean Ensemble generation

Perturbation strategy
Ensemble generation

Assumptions on state error sources
Wind stress + pressure

Bathymetry

River runoff

Turbulence (meso, mixing)

Large-scale circulation

Initial/boundary conditions

Generation example with wind velocity errors (2004):

– Generate samples of surface atmospheric variables by randomly combining 10 
bivariate (Uw) variability EOFs (Auclair et al., 2003)

– One set of Gaussian random coefficients every 5 days

– Integrate ocean members, providing samples of oceanic and atmospheric surface 
variables

Mode 1: 38% of 
variance

Mode 2: 32% of 
variance

Mode 3: 11% of 
variance

BoB mean surface currents

in July-August 2004

& bathymetry 

2.1. Bay of Biscay (BoB) configurations 

• SYMPHONIE 3DFD, 3-km horizontal resolution, free surface, 
sigma-step vertical scheme (41 levels max), major river 
runoff, tidal friction (2004) or tides (2008)

• 3-hourly ALADIN wind (+ atm. surface pressure in 2008)

• Open boundaries, downscaled from 
MERCATOR PSY2v3 (1/12°) 

• Dominant circulation features:

– Cyclonic slope circulation, 
anticyclonic recirculation

– Mesoscale activity above abyssal plain

– Coastal upwellings (e.g. Galicia)

– HF processes (shelf/shelf break)

2.2. Typical features 
of the variable surface circulation (2004)

July 17, 2004 July 30

CC

G

F F

Sea-Surface Temperature (SST) and Wind

Sea-Level Anomaly (SLA) and Residual Surface Currents

The Ensemble is meant to describe:

– Uncertainties regarding some processes in the model 
(in response to perturbations)

– Uncertainties associated with modelling errors or 
inadequacies of the numerical schemes  e.g. 

instabilities linked to tracer inversion near the shelf 
break in this version of SYMPHONIE

3.3. Ensemble spread as a function of time: SSH, SST, T540

– Wind velocity errors

– Structures slowly fill up above the abyssal plain, in particular sprouting from the North Iberian shelf

– The response on the shelf is more quickly established and more time dependent 

3.4. Representers of SSH above the abyssal plain

– Potential impact on subsurface variables – both on the main thermocline, and on the thermostat-like depth range 
around 500m depth (analysis in progress)

– Local SSH-SSH representers of SSH measurements 6km apart show that the potential impact of high-resolution 
altimetry (akin to what SWOT would provide) contains:

• The high-resolution information contained in the signal itself (not shown here, obviously)

• The spatial variability of the influence functions (shown on right panel) 

3.5. Representers of SSH on top of the South Armorican shelf

– Mostly a shelf-wide response (correlations with abyssal plain variables are probably artefacts)

– High temporal variability
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