DYNAMIC OCEAN TOPOGRAPHY (DOT) FIRST ESTIMATES WITH GOCE GRAVITY FIELDS

Wolfgang Bosch and Roman Savcenko
Deutsches Geodätisches Forschungsinstitut (DGFI), München

E-mail: bosch@dgfi.badw.de

The geodetic way

Equation

$$DOT = h - N$$

not as simple as it seems!

Geoid heights N

- are defined everywhere
- Relative smooth (from spherical harmonics)

Sea surface heights h

- observed on ocean profiles only
- High along-track resolution (e.g. 7km sampling)

The "profile approach" - rationale

- Perform differences h N on individual altimeter profiles
 - Avoids initial gridding of h with undesirable smoothing
 - No artificial extension of h on land
- Consistent low-pass filtering to both, h and N
 - N can be filtered in the spectral domain
 - h must be filtered in 1-D along track
 - Gauss-type filter preferred (no sidelobes in spectral and spatial domain)
- Systematic differences between
 1-D and 2-D filtering

Filter Correction

accounting for systematic differences between 1-D and 2-D filtering

• 2D[h] = 1D[h] + (2D[h] - 1D[h]) $\approx 1D[h] + (2D[N_{high-res}] - 1D[N_{high-res}])$

Filter correction

DOT computation on individual profiles

DOT =
$$2D[h - N]$$

= $2D[h] - 2D[N]$
= $1D[h] + (2D[N_{high-res}] - 1D[N_{high-res}]) - 2D[N]$

It's even more favourable to re-order:

DOT =
$$1D[h] - 1D[N_{high-res}] + 2D[N_{high-res}] - 2D[N]$$

= $1D[h - N_{high-res}] + 2D[N_{high-res} - N]$
,,Pre-Geoid Correction"

Pre-GOCE results

Using ITG03S & multi-mission altimetry for 1992-2008 with Gauss Filter Width D = 241km (L=60)

Rationale for higher resolution: QL-GOCE

Increase in signal variance [cm²]

Mean GOCE DOTs (D=121km/L=120) compared with external estimates

DOT variations in 2004 (GOCO1S geoid; Filter width D= 121km/L=120)

Conclusions

- The geodetic "profile approach" performs spectrally consistent differences h – N
- DOT profiles show reasonable pattern with no artifacts in coastal area
- Compared to GRACE, the first GOCE gravity field allows at least to double the DOT resolution (D=121km/L=120)
- The profile approach is applied to individual altimeter profiles and thus provides "instantaneous" DOT-profiles

Thanks for your attention!

DOT computation on individual profiles

DOT =
$$2D[h - N]$$

= $2D[h] - 2D[N]$
= $1D[h] + (2D[N_{high-res}] - 1D[N_{high-res}]) - 2D[N]$

Re-ordering is even more favourable

DOT =
$$1D[h] - 1D[N_{high-res}] + 2D[N_{high-res}] - 2D[N]$$

= $1D[h - N_{high-res}] + 2D[N_{high-res} - N]$
"Pre-Geoid Correction (PGC)"

PGC can be computed once in advance!

Filter Correction for a common Topex-EM/Jason-1 Cycle

Pre-geoid Correction for GRACE and GOCE

