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GRACE and GOCE are best for long
wavelengths ( > 200 km)
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Figure from the GOCO1S combined GRACE-GOCE
model document, R. Pail et al., 23-07-2010.

Satellite gravity missions
yield excellent resolution of
large-scale anomalies
(spherical harmonic degree
< 200, or wavelength > 200
km).

However, because they
measure the field at satellite
orbital altitude, they are
limited by ‘upward
continuation’, due to a
physical law. They cannot
resolve the field at scales
much shorter than their
orbital altitude.

Satellite altimeters measure
the effect of the gravity field
on sea level, so they resolve
shorter scales.



Altimetry is best for short wavelengths
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The altimeter sees the effect of the gravity field on
sea level, where there is zero upward continuation
(no gravity signal loss).



Sea surface slope is our signal

Standard Deflected
gravity Induced gravity
surface slope

Ocean floor with seamount

Sea surface height departs significantly from the
geoid, but the sea surface slope is usually within 1
micro-radian (1 mm per 1 km) of the geoid slope.
Where dynamic slope is larger, we filter it out.



Altimetric gravity quality so far, 1
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The Geosat Geodetic Mission (1985-86,
18 months) and the ERS-1 Geodetic
Phases E and F (1994-95, 11 months)
furnished a spatially dense network of
ground tracks (~5 km for Geosat, ~8 km
for ERS-1, at the Equator). Spatial
resolution of the marine gravity field is
determined by these data sets.

Let’s compare gravity anomalies derived from altimetry [Sandwell & Smith, JGR,
2009] to gravity measurements made by a ship [JAMSTEC, 2010; the analysis here
follows Marks et al., Mar. Geophys. Res., in press]. Note that the altimetry resolves
anomalies associated with narrow (~20 km wide) seamounts, and recall that GRACE
and GOCE cannot resolve these anomalies. The RMS difference in the two gravity
flavors is around 3 mGal. But is this error in the altimeter data or the ship data?



Altimetric gravity quality so far, 2
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Although ship gravity is coherent with depth at wavelengths longer than 10 km,
altimetric gravity is coherent with ship gravity only at wavelengths longer than 20 km.
We conclude that: (1) there is signal in the marine gravity field at very short
wavelengths; (2) Geosat & ERS-1 have not resolved it; (3) present gravity resolution is
limited to about 20-30 km wavelength. If we assume that all the 3 mGal RMS gravity
difference is due to error in the altimetric gravity, then geoids & mean sea surfaces built
from these altimetric gravity data (such as EGM2008, DNSC08, DTU10) should have

slope errors around 3 mm/km, mostly at wavelengths less than 20-30 km.
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Lowering the noise level

 SAR mode (Delay-Doppler) altimetry in Ku band
should cut noise level by ~2x. But CryoSat2 will
not operate in SAR mode over all the ocean.

e Ka altimetry should also cut noise by ~2x. But
AltiKa on SARAL will stay on a 35-day repeat orbit,
not a geodetic orbit.

e Jason-1, with PRF ~2x Geosat or ERS-1, could cut
noise level by ~1.4x or more, depending on
geodetic mission duration.



Another consideration: inclination

Gravity calculation requires north and east components of sea
surface slope. The accuracy with which these can be obtained from
an altimeter depends on the track crossing angle, which is a function
of latitude and the orbital inclination of the satellite.
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No alternative to Jason-1

Envisat’s new orbit is not geodetic, and it is
polar (poor east-west resolution).

Same goes for SARAL/AltiKa.

Hy-2 is polar, we don’t know much about it,
and data sharing agreements are in doubt.

CryoSat2 is in a geodetic orbit, but very polar,
and not in SAR mode over all the ocean.

Jason-1 is the best hope for geodesy.



What orbit would Jason-1 need to be
geodetically useful?

 To resolve to 20 km or better, we need tracks to be 10
km or closer; implying that the orbit should not repeat
for at least 4000 revolutions (roughly 312 days).

 During that time, it could have “near repeats”, that is,
sub-cycles that would repeat “closely enough” (within
an eddy correlation scale?) to allow simultaneous
observation of mesoscale oceanography.

* Gerald Dibarboure has studied many orbit options and
sent interesting results to the J-1 EoL discussion. His
suggestion of a 12+341/419 orbit seems a good one.



Slope measurement is simple
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The ionosphere, troposphere and sea-state bias
corrections have correlation scales longer than 20-
30 km. Therefore they do not affect short-scale
slope resolution. (A geodesy mission can be done
by J-1 even if the C-band or MWR fails.)



Simultaneous mesoscale?

 We believe an altimeter in a geodetic orbit, or
previously unflown orbit, can observe SSHA.

 We think (some) MSS models are good
enough. For example, DTU10.

e This question is relevant not only to a Jason-1
End-of-Life orbit change, but also to a Jason-
CS orbit change.
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Seamounts Mapped
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Why do we want to measure the
small-scale marine gravity field?

Uncharted i" :
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Seamount Height (km)

We want to resolve more of the
unmapped sea floor topography to reveal

more habitat, geology, and obstacles to
flow.

The present resolution of altimetric

- bathymetry maps yields seafloor slopes

that are too smooth and fails to identify
areas that may excite mixing and baroclinic
tides [Becker & Sandwell, JGR, 2008].

As an example, studies of the size-frequency distribution of seamounts suggest
that if we can improve seamount anomaly resolution by a factor of two, we will
reveal between 50 thousand and 100 thousand seamounts that are currently

invisible in the existing geodetic altimeter maps. Present maps resolve only a few
thousand seamounts.



ADDITIONAL SLIDES FOLLOW



Not all MSS are good for this
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Gravity sighal-to-noise
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