

SLOOP: Toward A New Methodology For Handling S1 And S2 Tidal Waves In DAC For Altimetry Products

Julien LAMOUROUX⁽¹⁾, Muriel LUX ⁽¹⁾, **Florent LYARD**⁽²⁾, CARRERE Loren⁽³⁾, CANCET Mathilde⁽¹⁾, BOURGOGNE Stéphane⁽¹⁾, FAUGERE Yannice⁽³⁾

⁽¹⁾ NOVELTIS - Ramonville St-Agne, France
⁽²⁾ LEGOS - Toulouse, France
⁽³⁾ CLS - Ramonville St-Agne, France

OST-ST Meeting, 18-22 October 2010 - Lisbon, Portugal

Outlines

Oceanic S1/S2 correction strategy in DAC: state of the art
Current strategy
Issues relative to this strategy
Proposition of a new strategy

✓ Variability study of radiational oceanic S1 and S2

New S1/S2 correction strategy in DAC: implementation and validation

Oceanic S1/S2 correction strategy in DAC: state of the art

Current AVISO correction strategy for DAC

- Problematic of the current study
 - > Oceanic S1
 - Mostly driven by atmospheric S1
 - Oceanic S1 variability essentially depends on atmospheric S1 one, which is significant

So, which strategy for S1 correction in DAC?

- Use climatologic S1 ?
- Use natural radiational S1 in DAC ?

Issues relative to current AVISO strategy:

- questionable use of <u>6h-ECMWF</u> forcing for atmospheric S1 retrieval
- questionable use of a unique <u>climatologic</u> S1 GOT for correction

Proposition: S1 is *a priori* not stable in time \rightarrow use natural radiational S1 in DAC as correction (*i.e.* no external correction)

Object of the current study: confirm S1 variability (seasonal, interannual) from 3h-ECMWF driven TUGO simulations

> Oceanic S2

- Tricky point ...
- Radiational S2 is already present in global atlas through data assimilation process, but only coherent with the period of assimilation (*e.g.* 1993-2000 for FES2004)
- S2 Nyquist frequency = 6h ...

Issues relative to current AVISO strategy:

- questionable use of 6h-ECMWF forcing for atmospheric S2 retrieval
- probable remaining radiational oceanic S2 signal in filtered-DAC
- questionable use of S2-FES2004 for current corrections

Solution:

- use natural radiational S2 in DAC as correction
- Subtract an equivalent multiannual radiational S2 analysis, over a period on which 3h-ECMWF forcings are available, to S2-FES2004
- Object of the current study: verification that S2 interannual variability is lower than seasonal variability

Proposed strategy

✓ Assumptions relative to this new strategy

Issue	Solution	Assumption
questionable use of a <u>unique</u> <u>climatologic</u> S1 GOT for correction	full S1 in DAC signal, no S1 correction from extern atlas	intra-annual and interannual variabilities of radiational S1 are significant
questionable use of S2_{FES2004} for current corrections (containing S2_{radiational 1993-2000})	S2 correction = S2 _{FES2004} - S2 _{radiational 2001-2009}	variability of S2 at interannual scale is lower than at seasonal scale

✓ Validation process

Comparison of variance reduction of tide-gauge time-series corrected with either new proposed correction, or current AVISO's one

Variability study of radiational oceanic S1 and S2

- ✓ protocol:
 - 7 years of 3h-ECMWF global atmosphere driven TUGO simulation (2002-2008)
 - > Harmonic analysis \rightarrow extraction of S1,S2
 - over each month = "monthly S1,S2"
 - over each year = "annual S1,S2"
 - > Variability diagnostics:
 - "annual variability" = complex mean and standard-deviation of monthly S1,S2 for a given year
 - "interannual variability" = complex mean and standard-deviation of annual S1,S2
 - "seasonal variability" = for a given month, complex mean and standarddeviation of monthly S1,S2 over the whole period (Ponte and Ray, 2003)

Stability of S1 annual analysis over 2002-2008

(interannual variability)

 Stability of S1 monthly analysis over 2002 (seasonal variability)

NOV-5034-SL-10149 SLOOP: Toward A New Methodology For Handling S1 And S2 Tidal Waves In DAC For Altimetry Products © Noveltis 2010. This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis

Stability of S1 monthly analysis over 2002-2008

Equator:

Mean S1: maximum in march and oct/nov minimum in june/july

At Globe scale:

Maximum S1: march/april (North Hemisphere) et sept/oct (South Hemisphere)

Minimum: june/july

Coherent with Ponte and Ray (2003) variability analysis of barometric S1

NB: interannual variability of monthly analysis → Using an S1 monthly climatology can be problematic

 Significant seasonal variability

NOV-5034-SL-10149 SLOOP: Toward A Nev © Noveltis 2010 - This document is the property of Nov

Comparisons of AVISO S1-GOT00 and monthly S1 analysis over year 2008

NOV-5034-SL-10149 SLOOP: Toward A New Methodology For Handling S1 And S2 Tidal Waves In DAC For Altimetry Products © Noveltis 2010. This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis

- Variability study of S1: conclusions
 - ✓ S1 annual analysis: quite stable in time
 - S1 monthly analysis: significant seasonal and interannual variability

➔ questionable use of a unique radiational S1 climatology (whether from GOT or computed from another model)

- Variability study of S2: reminder
 - Tricky point …
 - Radiational S2 is already present in global atlas through data assimilation process, but only coherent with the period of assimilation (*e.g.* 1993-2000 for FES2004)
 - ✓ questionable use of S2-FES2004 for current corrections
 - ➔ Solution: subtract an equivalent multiannual radiational S2 analysis, over a period on which 3h-ECMWF forcings are available, to S2-FES2004
 - ➔ Object of the current study: verification that S2 interannual variability is lower than seasonal variability

Stability of S2 monthly analysis over 2002 (seasonal variability)

 Stability of S1 annual analysis over 2002-2008 (interannual variability)

NOV-5034-SL-10149 SLOOP: Toward A New Methodology For Handling S1 And S2 Tidal Waves In DAC For Altimetry Products © Noveltis 2010 - This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis

Stability of S2 monthly analysis over 2002-2008 0

Important seasonal variability

Mean of monthly S2: maximum in march/april and october/november minimum in june/july

Decrease of amplitude between march and july: O(10-40%)

Coherent with Ponte and Ray (2003) analysis of mean barometric S2 at seasonal scale

Standard-deviation of monthly S2 is guite stable over 2002-2008

→ variability of S2 at interannual scale is lower than at seasonal scale

NOV-5034-SL-10149 © Noveltis 2010 - This document is the property or wavelus, no part of

- Variability study of S2: conclusions
 - Interannual variability significantly lower than seasonal variability
 - Strong annual evolution of S2 signal, while interannual variability remains stable and limited
 - ➔ interannual variability is not "negligible" with regard to seasonal variability, but still significantly less important.
 - → coherent assumption: S2_{radiational 1993-2000} ~ S2_{radiational 2001-2009}

note: another possible solution would be to subtract the radiational S2 signal in DAC, using an annual S2 analysed from DAC signal

- Validation of new correction strategy
 - Protocol
 - S1 correction
 - 13 tidegauges time-series: **detided**, **excepted for S1 signal**
 - S1 AVISO correction=DAC_{residual S1/S2} + S1GOT00 (*i.e.* classical correction without S2 contribution)
 - New correction = TUGO DAC, filtered from S2 signal
 - S2 correction
 - 13 tidegauges time-series: detided, excepted for S2 signal
 - S2 AVISO correction=DAC_{residual S1/S2} + S2FES04 (*i.e.* classical correction without S1 contribution)
 - New correction = TUGO DAC, filtered from S1 signal + S2FES04 S2_{radiational 2001-2009}
 - Variance reduction of tidegauges time-series corrected with either AVISO or new correction (focus on [0.5-20 days] frequencies)

Validation of new correction strategy

Results

S1 correction

globally, stronger variance reduction with new correction strategy; gain = O(1-2cm), *i.e.* 5-20% with regard to natural variance levels

S2 correction

New correction:

- less efficient for 5 stations, with negative gain O(-1,-4cm)
- better or at least similar for the 8 others, with gain *O*(1-5cm), *i.e.* 3-25% with regard to natural variance levels
- → New S2 correction gain less significant than new S1 correction gain
- ➔ But promising global results
- Should be now validated over a larger database

© Noveltis 2010 This document is the property of Noveltis, no part of it shall be reproduced or transmitted without the express prior written authorisation of Noveltis

Thank you for your attention

SLOOP: Toward A New Methodology For Handling S1 And S2 Tidal Waves In DAC For Altimetry Products

Julien LAMOUROUX⁽¹⁾, Muriel LUX ⁽¹⁾, **Florent LYARD**⁽²⁾, CARRERE Loren⁽³⁾, CANCET Mathilde⁽¹⁾, BOURGOGNE Stéphane⁽¹⁾, FAUGERE Yannice⁽³⁾

⁽¹⁾ NOVELTIS - Ramonville St-Agne, France
⁽²⁾ LEGOS - Toulouse, France
⁽³⁾ CLS - Ramonville St-Agne, France

OST-ST Meeting, 18-22 October 2010 - Lisbon, Portugal