

CROSS-CALIBRATION between ENVISAT and JASON-1/2

Y Faugere, JF Legeais, A Ollivier, P Femenias (ESA), N Picot (CNES)

Plan

- Data and processing
- •SSH performances and geographically correlated biases
- SLA Stability
- •Impact of the ground track change in October 2010

Data and processing

In this work:

All SSH Correction have been homogenized USO auxiliary correction used Reprocessed CNES/GDRC orbit used

Envisat GDR dataset

↓ September 2005 1 June 2008 60 30 22 October 2010: orbit change 1st occurrence of USO S-Band Power Processed S-Band in GDR 2: Anomaly: Anomaly loss: Use of new 27th September 2004 17th Jan 2008 solved: standards Cycle 30 → No more flag Cycle 65 Use of dedicated needed Use of GIM correction on the range ionospheric correction afterward

Envisat since cycle 86 on 11/01/2010: New version of ground segment (IPF V6.02L04 and CMA V9.3.02)

- •Main changes:
 - new PTR processing with increased resolution
 - •Change on SWH: -13cm bias
 - •new SSB Table

Impact of -10.5mm on SLA when using USO Auxiliary corrections supplied with the GDR

Data and processing

Envisat GDR dataset

Editing ratio cross comparison

- ✓ the editing ratio is particularly low on Envisat even in rain areas
- ✓ Could be related to the altitude of the satellite (smallest foot print size)

Monitoring of Envisat and Jason-1 and Jason-2 IGDR Monitoring

Standard deviation of EN/J1/J2 IGDR SLA per day over the last 2 month (m)

SALP / DUACS key Performances Indicators 2010/16/10

- ✓ Good performances of Envisat, Jason-1 and Jason-2 IGDRs products thanks to a good MOE quality
- ✓ Information IGDR and RT data available on aviso.oceanobs.com/en/data/product-information/duacs/key-performance-indicators/index.html

Envisat /Jason-2 GDR crossovers analysis over 2 years

Std of SSH differences(cm) - (box averaged)

Std Dev of SSH differences at crossovers (selection on Lat, Bathy, variability)

- •Similar performances for the 2 satellites at crossovers
- •impact of the Loss of S-Band not yet visible (low solar activity period)

MEAN (Envisat -Jason-2) SSH

East/west Pattern with a maximum about 2cm around Mexico Gulf Where does it come from? Is it systematic?

=>For mesoscale applications, the error level associated to Envisat data is very close to the one from Jason series

Mean (Envisat –Jason-1) SSH at crossover (cm) per longitude

OSTST 2010, Lisbonne

Extract from Lucas Cerri presentation at OSTST 2009 (Seattle).

Differences between 2 orbit solutions on Jason-1:

Eigen4An: GDRC

GC_10d_r02: CNES-GRGS Grace derived 10 day gravity fields (release 2)

SLA stability

Envisat Mean Sea level rise

- •The difference with Jason-1 is >1mm/year over 2004-2010 using radiometer correction
- •For Jason-1/Topex: the error budget on Jason-1 is estimated to 0.6mm/year (Ablain, 2009)

Mean Sea Level trend (cm)

Envisat –Jason-1 MSL (cm)

- ✓ This fine behaviour is only visible using comparison with other mission or In Situ data
- √The coming reprocessing will cancel the quantification effect but not the trend difference

SLA stability

Wet Troposphere correction trends on 2003-2010 (cm)

•Strong trend differences:

•EN MWR (GDR): -0.2 mm/year

•J1 JMR (GDR) : 0.1mm/year

•ECMWF : 0.4 mm/year

•NCEP : 0.5 mm/year

Differences on interannual signals

see E Obligis talk for more details

- ✓ Envisat wet troposphere correction trend is probably underestimated in Envisat product
- ✓ Correcting this effect would increase slightly EN MSL

Local MSL trend using a reprocessed orbit

[MSL trend map Jason-1] - [MSL trend map Envisat]

- •Jason-1 Current orbit Configuration : CNES GDR-C
- •Envisat **Old orbit Configuration**: CNES GDR-A/GDR-B/GDR-C

=>Strong features are observed, ranging from +/- 5 mm/y

Local MSL trend using a reprocessed orbit

[MSL trend map Jason-1] - [MSL trend map Envisat]

- •Jason-1 Current orbit Configuration : CNES GDR-C
- Envisat Reprocessed orbit Configuration: CNES GDR-C (see http://ids-doris.org)

=>Some patches have been removed allowing us to highlight a strong east/west signal better

mpact of the ground track change in October 2010

- •After 26 Octobre 2006 Envisat data will be on a new ground track with a 30 day repeat cycle
- •The first impact is: **ERS-2 altimetry data interesting again**. It will bring useful additional information for altimetry applications in North Atlantic (mesoscale mapping)

- •On this reduced coverage **5 altimeter** missions will be flying on **5 different** ground tracks =>never happened!
- •See Poster on calval results Mertz et al

Impact of the ground track change in October 2010@

•For the new Envisat mission phase, the SLA will not be computed using a mean profile.MSS will be used instead. What is the impact on the SLA performances?

For Jason-1 in 2009 after the ground track change, the Sea Level Anomaly variance increased by 2-3 cm rms (from Ablain et al 2010)

- ✓ Envisat SLA performances are expected to be impacted after 26 October 2010
- ✓ Announcement on the Envisat orbit change has been published under the Envisat News on Earthnet Online http://earth.esa.int
- ✓ See also Envisat related web sites for news on the change:

http://envisat.esa.int

http://earth.eo.esa.int/pcs/envisat/ra2/

Conclusion

•Ra-2 altimetry system has good performances

- ✓ A very good availability
- √Good metrics at crossovers, at the same level as Jason series
- ✓ Fine Cross calibration with Jason-1 and 2 highlighted millimetric jumps on Envisat Mean Sea Level.

•Use of a homogeneous CNES orbit

- ✓ Shows that reprocessing data is crucial. Envisat reprocessing has started.
- ✓ highlight a strong East/west signal on Envisat/Jason-1 SSH regional differences impacting the Mean Sea Level Trend

•Impact of the ground track change in October 2010

- ✓ ERS-2 altimetry data interesting again
- ✓ Sea Level Anomaly variance will increase due to residual MSS errors. It will be quantified when first products are delivered after the maneuvers