Expanding the use of NRT altimeter data at NOAA/NCEP

D. Vandemark¹, (PI) V. Zlotnicki², H. Feng¹, P. Callahan²

¹University of New Hampshire, Durham, NH ²JPL, Pasadena CA

M. Ji³, J. Sienkiewicz³, G. McFadden³, H. Tolman³, A. Chawla³, J. Lillibridge⁴

³NOAA/NCEP, Camp Springs MD ⁴NOAA/NESDIS, Silver Spring MD

OUTLINE

- Introduction to altimeter use at NCEP
- Study components WWV apps
 - NASA ROSES project Accelerating Operational Use of Research Data
 - Data quality, data access, timing, coverage, alternate products
 - A different sort of OSTST EO activity
- Conclusions

JPL

Problem statement

- Altimeter data usage at NCEP limited at project onset
- Altimeter WWV data viewed as less essential in forecast applications due to coverage, but desired
- Altimeter WWV most essential in forecast guidance (WAVEWATCH III)
- Loss of QuikScat plus more altimeters in tandem -> interest, attention, requirement for effort and collaboration in forecast area

Altimeter SWH in OPC Operations

- NRT observations: Integrated into N-AWIPS operational workstations
- Diagnostics: Validate wave model output in real time
- Data source for automated wave analysis (OI) as guidance for forecasters
- Of interest: validation of high seas wave forecasts

Additional source of data for forecaster analysis

Value-added sea state analyses #1 – Tropical storm size climatology using Jason-1 (2002-2005)

Also performed with similar spatial results for the radar cross section data

Osland K A and P. S. Callahan, Investigating hurricanes with altimeter data: methods and first results, manuscript submitted in 2010.

Value-added analyses #2 – Revised wind speed algorithm for gale to storm force (with Y. Quilfen)

Issue:

Altimeter GDR wind speed product not valid above ~ 18 m/s (gale is 18 -24 m/s)

Solution:

IPL

Revisit Young (1993) to tune/train a high wind speed 'branch'

Use QuikScat scatterometer high wind model – known and understood at NCEP

Value-added analyses #2 – Revised wind speed algorithm for gale to storm force

Issue:

Altimeter GDR wind speed product not valid above ~ 18 m/s (gale is 18 -24 m/s)

Solution:

IPL

Revisit Young (1993) to tune/train a high wind speed 'branch'

Use QuikScat scatterometer high wind model – known and understood at NCEP

U₁₀ = 96.98 – 7.32 * (NRCS + offset)

for NRCS < 10.7896 dB

Value-added analyses #2 – Revised wind speed algorithm for gale to storm force

Value-added analyses #3 – Data access for NRT altimeter data: flat ASCII

Issue:

Altimeter OGDR wind and wave product is very simple but not trivial to access

Topic came up in our NCEP-NASA project and in IOC/IODE/WMO (EUMETSAT/NOAA) **Southern Ocean forecaster workshop** held Dec. 2009 (led by Stan Wilson and Julia Figa Saldana)

Forecasters from Chile, Argentina, Peru, Brazil, India, Fiji, South Africa, New Zealand, France, Spain, Norway, US, and Belgium

Value-added analyses #3 – Data access for NRT altimeter data: flat ASCII

OSTST

Issue:

Altimeter OGDR wind and wave product is very simple but not trivial to access

At right – NCEP chart for incoming altimeter OGDR -> display flat ascii files with latency etc...

Altimeter file information		Jason-1 GTS	Jason-1 NAVO	Jason-2 interim	Envisat NAVO	GFO NAVO	Envisat GTS ¹
Input NRT altim. wind/wave BUFR		OSDR ²	SNAPS jogb*.bufr ³	OGDR- BUFR ⁴ (prelim.)	SNAPS efgb*.bufr	SNAPS gogb*.bufr	1 June 2010
Data source for NCEP, Native file and native source		CNES	NAVO, OSDR, JPL pull	ESPC/DDS, GTS ⁵ , OGDR- BUFR	NAVO, FDMAR, ESA pull	NAVO, NGDR-O, NOAA pull	ESA
NCEP Transfer method		GTS	ftp push	GTS	ftp push	ftp push	Not yet
NCEP/NCO decoder ⁶		<i>dcigdr</i> IGDR decoder	<i>dcgffd</i> GFO-FD wind/wave decoder	none	<i>dcgffd</i> GFO-FD wind/wave decoder	<i>dcgffd</i> GFO-FD wind/wave decoder	TBD
NCEP tank filenames ⁷		xx106 cajsww	xx110 njsnww	nonc	xx108 envsww	xx107 gfofww	TBD
Absolute latency ⁸ (hrs)	min. avg. max.	0.75 2.20 4.20	0.84-1.1 3.3-24. 5.4-48	92%< 3 hr in Aug2008 ⁹	1.7 3.2 5.0	1.2-4.2 6.2-9.8 15.0	TBD
Possible latency improvements		unlikely	N/A	Increase # of ground stations?	GTS soon? 2009?	low priority	TBD
Hourly ASCII NAWIPS files ¹⁰		jason_yyyy mmddhh.sg wh	N/A	jason2*.sgwh	envi*.sgwh	gfo*.sgwh	Not yet

http://www.emc.ncep.noaa.gov/mmb/data_processing/data_dumping.doc/table_1.htm ⁸ Defined as time between receipt into tank and actual observation. Values provided for the period 20080910-20080914 by Jeff Whiting in email of 15 Sep 2008.

IRE

¹ Email between S. Wilson & H. Laur 20080911, now available in June 2010 via ftp or GTS.

² The EMC table for BUFR types has this listed at IGDR but this is not true. It is OSDR.

³ These files are renamed at NCEP/NCO as jso_*.bf,gfo_*.bf, or enf_*.bf, directory=/oceano/ ⁴ OGDR-BUFR = OGDR-SSHA except the latter is in netCDF

⁵ Trial period data flow method – see "ostm_ncep_brief_20080917.ppt", J. Lillibridge.

⁶ Decoder name and description taken from "decoderlist.doc" of 14 Sep. 2008, Mainelli and Ator ⁷ See Bufr Type 31: Oceanographic Data at ---

Value-added analyses #3 – Data access for NRT altimeter data: flat ASCII

Solution:

One stop multi-mission flat ascii NRT wind wave product with simple documentation? In the works – see Stan Wilson and/or Mark Bourassa

Summary

- Project completed and relatively successful for NCEP
- Final report available by contacting PI Zlotnicki or D. Vandemark (doug.vandemark@unh.edu)
- Data access for NRT altimeter wind and wave data could be better for "L3/L4" forecaster users
- One lesson learned NRT wind and wave applications in the forecast offices well served by dedicated and perhaps formal contact with OSTST
 - Help in the OGDR access and data interpretation may go a long way

IPL

UNIVERSITY of NEW HAMPSHIRE

WAVEWATCH III[™] Model Validation

- Model results are interpolated onto altimeter tracks
- Collocation done for 9 time periods:
 - Hindcast, Nowcast, and 1 7 day Forecast
 - Collocated points on land are ignored
 - Collocated model files archived for later analysis
- Altimeter data processing:
 - De-spiked to remove erroneous data (also gets rid of small islands that cannot be resolved by the models)
 - Remove outliers
 - Filter the data using a running average (optional)
- Error estimates developed using month long archives
 - Error maps developed using 3 month archives
- Assimilation of altimetry data planned for summer 2010

Upcoming Altimetric Missions

- Cryosat-2
 - European Space Agency mission
 - Delay-Doppler interferometric altimeter
 - Conventional open-ocean fast-delivery data
 - Launched 08-Apr-2010
- SARAL/AltiKa

- French/Indian mission: CNES/ISRO
- Ka-band vs. traditional Ku-band altimeter
- Launch in late 2010 / early 2011
- A.O. for data access Operational Applications

VERSITY of NEW HAMPSHIRE