AN IMPROVED WET TROPOSPHERIC CORRECTION FOR THE CRYOSAT MISSION OVER THE OCEAN

Jacques STUM*, Philippe SICARD*, Loren CARRERE* and Juliette

LAMBIN**

(*) Collecte Localisation Satellites, 8-10 rue Hermès, 31520 Ramonville, France (**) Centre National d'Etudes Spatiales, 18 avenue Edouard Belin, 31055 Toulouse, France

Introducing the Cryosat-2 context

- Cryosat-2 satellite launched in April 2010
- Cryosphere mission, but will also measure the ocean surface topography.
- No MWR on board: the wet tropospheric correction relies on ECMWF model analyses
- Perform objective analysis of all ancillary scanning MWR WV measurements to improve the WTC for Cryosat-2 over the ocean.

Presentation outline

- The scanning radiometers WV observations :
 - Sensors and products
- The objective analysis
 - Math background, covariance model calculation
- The method validation
 - 4-month run, statistical comparison with JMR and ECMWF path delay (crossover analysis...)

The scanning radiometers WV observations (status in 2008)

- AMSU-A, aboard the NOAA and METOP series (2 channels, large swath, 50-km product resolution): 5 available sensors in 2008
- SSMI, aboard DMSP F13 (3 channels, medium swath, 25-km product resolution)
- TMI, aboard TRMM (3 channels, small swath, 10-km product resolution)
- AMSR-E, aboard AQUA (3 channels, medium swath, 10-km product resolution)

AMSU15 + AMSU16 + AMSU17 + AMSU18 + AMSUMA + SSMI13 + AMSRE + TMITR January 5th, 2008, from 16h to 17h GMT

Products

- Level 2 products (swath data) of year 2008 downloaded from NOAA (AMSUs and SSMI), NSIDC (AMSR-E) and GHRC (TMI)
- Quality flags used to edit data contaminated by rain or ice
- Computing the water vapor path delay (= wet tropospheric correction) from total precipitable water

Sensor PD intercomparison

- Jason-1 microwave radiometer (JMR) taken as a reference
- Sensor-JMR matchups: bilinear interpolation at JMR location of the four sensor surrounding pixels, with less than 0.5 hour time lag
- Global statistics of the (sensor JMR) PD difference over 12 Jason-1 cycles (4 months)

One example: AMSR-E versus JMR

Objective analysis

- Bretherton et al., 1976
- Applied to SST (Reynolds and Smith, 1994), altimetry (Le Traon et al., 1998), Ocean Color (Pottier et al., 2006)
- $F(P) = G(P) + \sum_{i=1}^{N} W_i \times Anom_i$
 - F(P): field to be estimated at a given position P
 - G(P): first-guess field
 - Anom_i = $F_i G(P)$
 - Wi : weights

Objective analysis

- Four quantities are needed to compute F(P) :
 - the first guess value G(P)
 - the variance of the measurement error
 - the signal variance
 - the correlation function of the anomaly field

Objective analysis

- The ECMWF PD is used as first guess field:
 allows to get a seamless PD correction
- VarErr taken as the square of the (Sensor JMR) PD standard deviation
- Signal variance and correlation function to be computed a priori from the (radiometer – ECMWF) PD anomalies

Hourly PD anomaly map

January mean of the PD anomaly variance

Time correlation radius

Mean value = 2 hours

Zonal correlation radius

Zonal correlation radius of the (Radiometer – ECMWF) wet tropospheric correction difference January 2008 mean

Mean value = 70 km

Meridional correlation radius

Meridional correlation radius of the (Radiometer – ECMWF) wet tropospheric correction difference January 2008 mean

Mean value = 60 km

Main features of correlation scales

- Space and time correlation scales of PD anomaly are geographically dependent, and to a lesser extent, seasonally dependent
- Meridional scales are generally shorter (~60 km) than zonal ones (~80 km)
- Size and shape of the subdomain used to select observations around P will thus be strongly geographic dependent

Validation exercise

- Running the OA using Jason-1 altimeter positions (12 cycles, January to April 2008)
- Assessing the performance of the OA-derived
 PD (only for formal error < 1)
 - Comparison of the JMR, ECMWF and OA PDs
 - Sea surface height crossover analysis

Statistical comparison of the 3 PD corrections

Statistical comparison of the 3 PD corrections

Variance of (OA – JMR)
PD difference (left)

Variance of (ECMWF – JMR)
PD difference (right)

Sea surface height performance analysis

Conclusions

- OA of scanning radiometers measurements using ECMWF as first-guess allows to compute a reliable PD correction for altimetry
- OA correction performs better than the ECMWF one, but the JMR remains the best one
- OA correction accuracy is governed by :
 - 1: the number and accuracy of observations
 - 2: the knowledge of the covariance model, including the sensor errors (to be improved!)

Conclusions

- OA software is close to « operational » and may be implemented in delayed time for Cryosat-2 over the ocean
- Acknowledgments to all data providers :
 - NSIDC
 - GHRC
 - NOAA CLASS staff (for unusual 1-year bulk data orders for AMSU and SSMI!)
- Certain potential to complement radiometer estimation (extrapolation accross track, SWOT mission for example)